Christian Michael Taplan, Marc Guerre, Filip Du Prez, Christopher N. Bowman, Department of Organic and Macromolecular Chemistry, Universiteit Gent = Ghent University [Belgium] (UGENT), Interactions moléculaires et réactivité chimique et photochimique (IMRCP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Department of Chemical and Biological Engineering [Boulder], University of Colorado [Boulder], Universiteit Gent = Ghent University (UGENT), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Fluides, Energie, Réacteurs, Matériaux et Transferts (FERMAT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), P3R - Polymères de Précision par Procédés Radicalaires (P3R), and Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT)
International audience; Surface modifications are typically permanent in shape and chemistry. Herein, vinylogous urethane (VU) chemistry is presented as an easily accessible and versatile platform for rapid, facile, and reworkable surface modification. It is demonstrated that both physical and chemical post-modification of permanent, yet dynamic elastic polymer networks are achieved. Surface patterns with high regularity are created, both via a straightforward replication process using a polydimethylsiloxane stamp (resolution ca. 10-100 µm) as well as using thermally activated nano-imprint lithography (NIL) to form hole, pillar, or line patterns (ca. 300 nm) in elastic VU-based vitrimers. The tunable, rapid exchange allows patterning at 130 °C in less than 15 min, resulting in an increased water contact angle and surface-structure induced light reflection. Moreover, it is also demonstrated that the use of a single dynamic covalent chemistry makes it possible to strongly adhere to fluorinated and non-fluorinated materials based on incompatible matrices, causing cohesive failure in a peel test. In a topography scan, the visibly transparent interface is shown to possess a continuous phase without a gap, while maintaining distinctively separated (non)-fluorinated domains. Finally, this approach allowed for a straightforward coating of a non-fluorinated material with a fluorinated monomer to minimize the overall fluorinated content.