1. Varijeteti grupoida
- Author
-
Đapić, Petar, Marković, Petar, Crvenković, Siniša, Madaras-Silađi, Rozalija, Dolinka, Igor, and Ćirić, Miroslav
- Subjects
baze, grupoid, ¤-linearne jednakosne teorije, n-linearne jednakosne teorije, ¤-kvazilinearne jednakosne teorije, n-kvazilinearne jednakosne teorije, linearni termi, regularni identiteti ,¤-linearne jednakosne teorije ,¤-kvazilinearne jednakosne teorije ,n-linearne jednakosne teorije ,n-quasilinearequational theories ,regularni identiteti ,groupoid ,linear terms ,¤-linear equational theories ,baze ,regular identity ,n-kvazilinearne jednakosne teorije ,nlinear equational theories ,grupoid ,base ,base, groupoid, ¤-linear equational theories, nlinear equational theories, ¤-quasilinear equational theories, n-quasilinearequational theories, linear terms, regular identity ,linearni termi ,¤-quasilinear equational theories - Abstract
Ova teza se bavi ¤-kvazilinearnim varijetetima grupoida. Pokazano je da postoji ta·cno dvadeset osam idempotentnih ¤-kvazilinearnih varijeteta grupoida, od kojih dvadeset ·sest varijeteta imaju kona·cnu bazu i te baze su i navedene, dok preostala dva varijeteta imaju inherentno beskona·cnu bazu. U tezi je opisano ured enje svih idempotentnih ¤-kvazilinearnih varijeteta grupoida i nalazimo male grupoide koji generi·su svaki od navedenih varijeteta. Na kraju je pokazano da postoji kontinum mnogo ¤-kvazilinearnih variejeteta grupoida., The topic of this thesis are ¤-quasilinear varieties of groupoids.We show that there exist exactly twenty-eight idempotent ¤-quasilinear varieties of groupoids, twenty-six of which are ¯nitely based (and we explicitlygive ¯nite bases for each of them), while two are inherently non¯nitely based.We describe the ordering of these twenty-eight idempotent ¤-quasilinear varieties of groupoids and ¯nd small generating algebras for each of them. Inthe end we show that there exist continuum many ¤-quasilinear varieties ofgroupoids, not all of which are even locally ¯nite.
- Published
- 2008