Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant genetic disorders and is caused by inactivating variants in the NF1 gene. The hallmarks of this chronic progressive disease are the development of benign neurofibromas as well as café-au-lait macules, axillary and inguinal freckling, Lisch nodules, optic nerve glioma and malignant peripheral nerve sheath tumours. Genetic analysis of NF1 may facilitate the identification of patients in early stages of the disease. This project reports a retrospective re-examination of the genetic variants identified in NF1 gene over a period of 10 years in the laboratory of Genetics Diagnostics of Ipatimup Diagnostics. The classification of 147 NF1 germline variants identified in 165 patients belonging to a cohort of 220 unrelated individuals with suspected neurofibromatosis has been reviewed. All genetic findings were reassessed according to the Guidelines for the Interpretation of Sequence Variants of the ACMG-AMP consensus and stratified into one of the five proposed classes (benign, likely benign, uncertain significance, likely pathogenic and pathogenic). The 147 variants included 53 frameshift alterations and 4 small inframe deletions, 32 nonsense and 25 missenses variants, 18 splicing alterations and 10 copy number variations including the entire NF1 gene, 4 complex variants and 1 synonymous. Most of these genetic changes are unique and distributed along the gene, although data suggest that five functional domains (CSRD, TBD, GRD and SEC-PH domains) are enriched in variants, which account for 46.8% of the NF1 alterations in this cohort. The second aim of this study was to implement a full-length RNA sequencing method, in order to detected splicing changes, which cannot be identified by the study of genomic DNA, commonly used. As such, in last 2 years, the search for variants in the NF1 gene in 28 unrelated patients has been investigated by studying the entire NF1 cDNA. According to the literature, the sensitivity, cost-effectiveness and reliability of a comprehensive RNA-based approach represents enormous advantages in comparison to specific DNA amplification. The detection rate is expected to be higher, which can be explained by the frequent occurrence of splicing defects in the NF1 gene that occur outside the canonical splice site. A total of 18 variants have been identified, of which 3 would not be detectable by the conventional technique previously used. Indeed, in 4 of the cases, the study of the complete RNA complemented with the gDNA allowed to identify 2 deep intronic variants (c.288+1139T>A and c.1642-449A>G), an Alu element insertion (c.587-4_587-3insAluYa5,587-15_587-4dupTTGTGTTTTTTC) and a complex indel variant (c.3975-1011_4110+1674delinsGGGCGGATCACGAGGTCAGGAGAT). Thus, this study demonstrates the advantage of an approach that integrates cDNA/gDNA analysis: the dual characterization of genetic alterations at both levels allows the detection of a broader spectrum of variants than any single-level approach, and provides a comprehensive understanding of its molecular pathogenesis. A Neurofibromatose tipo 1 (NF1) é uma das doenças genéticas autossómicas dominantes mais comuns, e é causada por variantes que inativam o gene NF1. As características mais marcadas desta doença crónica progressiva são o desenvolvimento de neurofibromas benignos, bem como de manchas café com leite, efélides axilares e inguinais, nódulos de Lisch, glioma do nervo ótico e tumores malignos do nervo periférico. A análise genética do gene NF1 pode facilitar a identificação de pacientes em estágios iniciais da doença. Este projeto teve como objetivo fazer uma revisão retrospetiva das variantes genéticas identificadas ao longo de 10 anos no laboratório de diagnóstico genético do Ipatimup Diagnósticos. Foi revista a classificação de 147 variantes germinativas detetadas no gene NF1, em 165 doentes pertencentes a uma coorte de 220 indivíduos não aparentados, com suspeita de Neurofibromatose tipo 1. Todos os achados genéticos foram reavaliados de acordo com as recomendações e diretrizes segundo o consenso do American College of Medical Genetics and Genomics and and the Association for Molecular Pathology para interpretação e classificação de variantes, e foram posteriormente estratificados em uma das cinco classes propostas (benigna; provavelmente benigna; de significado incerto; provavelmente patogénica; patogénica). As 147 variantes avaliadas incluem 53 variantes frameshift e 4 deleções inframe, 32 variantes nonsense e 25 missenses, 18 variantes de splicing, 10 copy number variations, incluindo a deleção total do gene NF1, 4 variantes complexas e 1 sinónima. A maioria destas alterações genéticas são únicas e encontram-se distribuídas ao longo de todo gene, embora os dados sugiram que cinco domínios funcionais (CSRD, TBD, GRD e os domínios SEC-PH) sejam mais ricos em variantes, sendo responsáveis por 46,8% das alterações encontradas nesta coorte. O segundo objetivo deste estudo consistiu em implementar um método de sequenciação de RNA, por forma a ser possível identificar alterações de splicing, não detetáveis pelo estudo do DNA genómico, usado por rotina. Neste sentido, nos últimos 2 anos, a pesquisa de variantes no gene NF1 em 28 pacientes não aparentados, foi feita pelo estudo de todo o cDNA. De acordo com a literatura, a sensibilidade, custo-benefício e confiabilidade de uma abordagem baseada em RNA para o gene NF1 mostra enormes vantagens face à amplificação do DNA genómico. É expectável que a taxa de deteção seja melhorada com este novo método em comparação com a abordagem em gDNA, o que é explicado pela ocorrência frequente de defeitos de splicing no gene NF1 que ocorrem fora do local de splicing canónico. Foi identificado um total de 18 variantes, das quais 3 não seriam detetadas recorrendo à técnica convencional usada anteriormente. De fato, em 4 dos casos estudados, a deteção de transcritos aberrantes, com posterior estudo do DNA genómico, permitiu a identificação de 2 variantes deep intronic (c.288+1139T>A e c.1642-449A>G), a inserção de um elemento Alu c.587-4_587-3insAluYa5,587-15_587-4dupTTGTGTTTTTTC), e ainda de uma variante indel complexa (c.3975-1011_4110+1674delinsGGGGCGGATCACGAGGTCAGGAGAT). Este trabalho demonstra, assim, a vantagem de uma abordagem que integre a análise de cDNA e gDNA: a dupla caracterização das alterações genéticas a ambos os níveis permite a deteção de um espectro mais amplo de variantes do que qualquer abordagem que seja analisada de modo singular, fornecendo assim uma maior compreensão de sua patogénese molecular. Mestrado em Biologia Molecular e Celular