1. Détection et suivi temps-réel d'objets 3D pour la smart mobilité routière et ferroviaire
- Author
-
Evain, Alexandre, Mauri, Antoine, Garnier, François, Kounouho, Messmer, Khemmar, Redouane, Haddad, Madjid, Boutteau, Rémi, Breteche, Sébastien, Ahmed-Ali, Sofiane, Institut de Recherche en Systèmes Electroniques Embarqués (IRSEEM), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-École Supérieure d’Ingénieurs en Génie Électrique (ESIGELEC), Pôle Instrumentation, Informatique et Systèmes, Normandie Université (NU)-Normandie Université (NU)-École Supérieure d’Ingénieurs en Génie Électrique (ESIGELEC)-Université de Rouen Normandie (UNIROUEN), Segula Technologies [France], Laboratoire d'Informatique, du Traitement de l'Information et des Systèmes (LITIS), Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Informatique, BioInformatique, Systèmes Complexes (IBISC), Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay, Université de Toulon, Université d'Aix Marseille, INRIA, and LIS Toulon
- Subjects
estimation de la distance ,localisation d'objets ,détection multi-objets 3D ,apprentissage profond ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,3D Bounding Boxes Estimation ,estimation des boîtes englobantes 3D ,Détection d'objets 3D ,3D Multi-Object Detection ,Smart Mobility ,mobilité intelligente ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Deep Learning ,3D Object Detection ,Distance Estimation ,distillation de connaissances ,Knowledge Distillation ,Object Localization - Abstract
International audience; Three-dimensional (3D) real-time object detection and tracking is an important task in the case of autonomous vehicles and road and railway smart mobility in order to allow them to analyze their environment for navigation and obstacle avoidance purposes. In this paper, we try to improve the efficiency of 3D monocular object detection by using dataset combination, knowledge distillation, and creating a lightweight model. Firstly, we combine real and synthetic datasets to increase the diversity and richness of the training data. Then, we use knowledge distillation to transfer the knowledge from a large, pre-trained model to a smaller, lightweight model. Finally, we created a lightweight model by selecting the combinations of width, depth and resolution in order to reach a target complexity and computation time. Our experiments show that using each method improves either the accuracy or the efficiency of our model with no significant drawbacks. Using all these approaches is especially useful for resource-constrained environments, such as self-driving cars and railway systems.; La détection et le suivi d'objets tridimensionnels (3D) temps-réel est une tâche importante dans le cas des véhicules autonomes et de la mobilité intelligente routière et ferroviaire, afin de leur permettre d'analyser leur environnement à des fins de navigation et d'évitement d'obstacles. Dans cet article, nous essayons d'améliorer l'efficacité de la détection d'objets 3D monoculaire en utilisant la combinaison de jeux de données, la distillation de connaissances et la création d'un modèle léger. Tout d'abord, nous combinons des ensembles de données réelles et synthétiques pour augmenter la diversité et la richesse des données d'entraînement. Ensuite, nous utilisons la distillation des connaissances pour transférer les connaissances d'un grand modèle pré-entraîné vers un modèle plus petit et léger. Enfin, nous avons créé un modèle léger en sélectionnant les combinaisons de largeur, de profondeur et de résolution afin d'atteindre une complexité et un temps de calcul cibles. Nos expériences montrent que l'utilisation de chaque méthode améliore soit la précision, soit l'efficacité de notre modèle, sans inconvénient majeur. L'utilisation de toutes ces approches est particulièrement utile pour les environnements à ressources limitées, tels que les voitures à conduite autonome et les systèmes ferroviaires.
- Published
- 2023