Purpose: High resolution investigation of spectral lines of space sources requires low intrinsic noise of the radio telescope receiving system. It is provided with both input cryogenic amplifiers and low phase noise of local oscillators. To make spectral studies, it is neces ary to be able to tune the frequencies of local oscillators with a small frequency step. The paper presents the results of developing the frequency synthesizers, which simultaneously provide both a very high frequency resolution and low level of phase noise. The results of measurements of natural noise of the RT-32 radio telescope radio receiving systems are given also. Design/methodology/approach: The RT-32 receiving systems are constructed as heterodyne receivers with two stages of frequency conversion. Tuning of receiving systems with a frequency step of 10 or 20 MHz is provided by local oscillators of the first frequency conversion stage, and precise tuning is provided due to the ultra-high resolution (0.0001 MHz) of DDS-based (direct digital synthesizer) local oscillators of the second frequency conversion stage. Findings: It is shown that the application of direct digital synthesizers is possible only with the low values of frequency multiplication factors, as well as under the conditions of careful filtering of all reference signals. The parameters of the local oscillators were measured with the N9951A spectrum analyzer (Keysight Technologies) with the high resolution and wide dynamic range. To measure the radio telescope receiving system noise characteristics, a special matched loads with the possibility of cooling down to the liquid nitrogen temperature were made. The noise temperature measurements were made in different cross sections of the RT-32 receiving system. Comparison of such measurements in different configurations makes it possible to provide a preliminary estimation of the RT-32 self noise in the C- and K-bands. Conclusions: The results of measurements of self noise of radio receiving systems and phase noise of local oscillators of the RT-32 radio telescope show that within the C-band the radio telescope is capable to perform high-sensitive studies in both a wide frequency band and a narrow frequency band with the high spectral resolution. Within the K-band, the natural noise is comparable (≈60÷80 K) with the external noise that also allows studying the radiation of maser radio sources. Key words: antenna, self noise, local oscillator, receiving system, radio telescope, RT-32, spectral lines Manuscript submitted 15.07.2020 Radio phys. radio astron. 2020, 25(3): 1 75-192 REFERENCES 1. ULYANOV, O. M., REZNICHENKO, O. M., ZAKHARENKO, V. V., ANTYUFEYEV, A. V., KOROLEV, A. M., PATOKA, O. M., PRISIAZHNII, V. I., POICHALO, A. V., VOITYUK, V. V., MAMAREV, V. N., OZHINSKII, V. V., VLASENKO, V. P., CHMIL, V. M., LEBED, V. I., PALAMAR, M. I., CHAIKOVSKII, A. V., PASTERNAK, YU. V., STREMBITSKII, M. A., NATAROV, M. P., STESHENKO, S. O., GLAMAZDYN, V. V., SHUBNY, A. S., KIRILENKO, A. A., KULIK, D. Y., KONOVALENKO, A. A., LYTVYNENKO, L. M. and YATSKIV, Y. S., 2019. Creating the RT-32 Radio Telescope on the Basic of MARK-4B Antenna System. 1. Modernization Project and First Results. Radio Phys. Radio Astron. vol. 24, no. 2, pp. 87–116. DOI: https://doi.org/10.15407/rpra24.02.087 2. ANTYUFEYEV, A. V., KOROLEV, A. M., PATOKA, O. M., SHULGA, V. M., ULYANOV, O. M., REZNICHENKO, O. M., ZAKHARENKO, V. V., PRISIAZHNII, V. I., POICHALO, A. V., VOITYUK ,V. V., MAMAREV, V. N., OZHINSKII, V. V., VLASENKO, V. P., CHMIL, V. M., LEBED, V. I., PALAMAR, M. I., CHAIKOVSKII, A. V., PASTERNAK, YU. V., STREMBITSKII, M. A., NATAROV, M. P., STESHENKO, S. O., GLAMAZDYN, V. V., SHUBNY, A. S., KIRILENKO, A. A., KULIK, D. Y. and PYLYPENKO, A. M., 2019. Creating the RT-32 Radio Telescope on the Basic of MARK-4B Antenna System. 1. Estimation of the Possibility for Making Spectral Observations of Radio Astronomical Objects. Radio Phys. Radio Astron . vol. 24, no. 3, pp. 163–183. DOI: https://doi.org/10.15407/rpra24.03.163 3. WOODBURN, L., NATUSCH, T., WESTON, S., THOMASSON, P., GODWIN, M., GRANET, C. and GULYAEV, S., 2015. Conversion of a New Zealand 30-metre telecommunications antenna into a radio telescope. Publ. Astron. Soc. Aust . vol. 32, id. e017. DOI: https://doi.org/10.1017/pasa.2015.13 4. YONEKURA, Y., SAITO, Y., SUGIYAMA, K., SOON, K. L., MOMOSE, M., YOKOSAWA, M., OGAWA, H., KIMURA, K., ABE, Y., NISHIMURA, A., HASEGAWA, Y., FUJISAWA, K., OHYAMA, T., KONO, Y., MIYAMOTO, Y., SAWADA-SATOH, S., KOBAYASHI, H., KAWAGUCHI, N., HONMA, M., SHIBATA, K. M., SATO, K., UENO, Y., JIKE, T., TAMURA, Y., HIROTA, T., MIYAZAKI, A., NIINUMA, K., SORAI, K., TAKABA, H., HACHISUKA, K., KONDO, T., SEKIDO, M., MURATA, Y., NAKAI, N. and OMODAKA, T., 2016. The Hitachi and Takahagi 32 m radio telescopes: Upgrade of the antennas from satellite communication to radio astronomy. Publ. Astron. Soc. Jpn . vol. 68, is. 5, id. 74. DOI: https://doi.org/10.1093/pasj/psw045 5. BELLOCHE, A., MESHCHERYAKOV, A. A., GARROD, R. T., ILYUSHIN, V. V., ALEKSEEV, E. A., MOTIYENKO, R. A., MARGULES, L., MULLER, H. S. P. and MENTEN, K. M., 2017. Rotational spectroscopy, tentative interstellar detection, and chemical modeling of N-methylformamid. Astron. Astrophys . vol. 601, id. A49. DOI: https://doi.org/10.1051/0004-6361/201629724 6. PENG, H., WU, Z., ZHANG, B., CHEN, Y., ZHENG, X., JIANG, D., SHEN, Z., CHEN, X. and SOTNIKOVA, YU. V., 2020. Radio properties of the OH megamaser galaxy IRAS 02524+2046. Astron. Astrophys .vol. 638, id. A78. DOI: https://doi.org/10.1051/0004-6361/202037559 7. GENTILE, K. and CUSHING, R. 1999. A Technical Tutorial on Digital Signal Synthesis, 1999 [online]. Analog Devices Inc. [viewed 25 July 2020]. Available from: https://www.analog.com/en/education/education-library/technical-tutorial-dds.html 8. ZAKHARENKO, V., KONOVALENKO, A., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., KOLIADIN, V., KALINICHENKO, N., STANISLAVSKY, A., DOROVSKYY, V., SHEPELEV, V., BUBNOV, I., YERIN, S., MELNIK, V., KOVAL, A., SHEVCHUK, N., VASYLIEVA, I., MYLOSTNA, K., SHEVTSOVA, A., SKORYK, A., KRAVTSOV, I., VOLVACH, Y., PLAKHOV, M., VASILENKO, N., VASYLKIVSKYI, Y., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., RYABOV, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., KVASOV, G., MUKHA, D., LITVINENKO, G., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHYN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A. and GRIEs-MEIER, J.-M., 2016. Digital Receiversfor Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum. vol. 5, is. 4, id. 1641010. DOI: https://doi.org/10.1142/S2251171716410105 9. TEXAS INSTRUMENTS INC., 2019. LMX2595 20-GHz Wideband PLLATINUM™ RF Synthesizer With Phase Synchronization and JESD204B Support. Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.ti.com/lit/gpn/lmx2595 10. ANALOG DEVICES INC., 2020. HMC814LC3B, SMT GaAs MMIC x2 Active frequency multiplier, 13 - 24.6 GHz output. HMC814LC3B Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/hmc814.pdf 11. ANALOG DEVICES INC., 2019. Low Power 250 MSPS 10-Bit DAC 1.8 V CMOS Direct Digital Synthesizer. AD9913 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technicaldocumentation/data-sheets/AD9913.pdf 12. ANALOG DEVICES INC., 2016. 3.5 GSPS Direct Digital Synthesizer with 12-Bit DAC. AD9914 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/AD9914.pdf 13. CUSHING, R., 2000. Single-Sideband Upconversion of Quadrature DDS Signals to the 800-to-2500-MHz Band. Analog Dialogue [online]. vol. 34, no. 3 [viewed 25 July 2020]. Available from: URL: https://www.analog.com/media/en/analog-dialogue/volume-34/number-1/articles/single-sideband-upconversion-of-quadrature-dds-signals.pdf 14. ALEKSEEV, E. A. and ZAKHARENKO, V. V., 2007. Direct Digital Synthesizer at the Microwave Spectroscopy. Radio Phys. Radio Astron . vol. 12, no. 2, pp. 205–213. (in Russian). 15. ALEKSEEV, E. A., MOTIYENKO, R. A. and MARGULES, L., 2011. Millimeter- and Submillimeter-Wave Spectrometers on the Basis of Direct Digital Synthesizers. Radio Phys. Radio Astron . vol. 16, no. 3, pp. 313–327. (in Russian). DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v3.i1.100 16. ALEKSEEV, E. A., ILYUSHIN, V. V. and MESCHERYAKOV, A. A., 2014. High-Precision Microwave Spectrometer with Sub-Doppler Spectral Resolution. Radio Phys. Radio Astron . vol. 19, no. 4, pp. 364–374. (in Russian). DOI: https://doi.org/10.15407/rpra19.04.364 17. ANALOG DEVICES INC., 2006. DC-to-2.5 GHz High IP3 Active Mixer. AD8343 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/AD8343.pdf 18. ANALOG DEVICES INC., 2017. Wideband Synthesizer with Integrated VCO. ADF4351 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/ADF4351.pdf 19. ANALOG DEVICES INC., 2016. MicroConverter® Multichannel 24-/16-Bit ADCs with Embedded 62 kB Flash and Single-Cycle MCU. ADuC845/ADuC847/ADuC848 Data Sheet [online]. [viewed 30 July 2020]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/ADUC845_847_848.pdf 20. BLEIDERS, M., BEZRUKOVS, V. and ORBIDANS, A., 2017. Performance Evaluation of Irbene RT-16 Radio Telescope Receiving System. Latv. J. Phys. Tech. Sci. vol. 54, is. 6, pp. 42–53. DOI: https://doi.org/10.1515/lpts-2017-0040