1. Valorization of levulinic acid by esterification with 1-octanol using a novel biocatalyst derived from Araujia sericifera.
- Author
-
Bayona Solano, Jaime E., Sánchez, Daniel A., and Tonetto, Gabriela M.
- Subjects
- *
LOW temperatures , *ENZYMES , *BIOCATALYSIS , *ESTERIFICATION , *LATEX , *HEPTANE - Abstract
Levulinic acid, which can be obtained from biomass, has sparked great interest as a biologically-based chemical building block with wide versatility and potential. Its esterification with alcohols of different chain lengths is a promising valorization process for obtaining esters with various applications in the areas of biofuels/biolubricants, food and cosmetics, among others. In this work, the enzymatic esterification of levulinic acid and 1-octanol using a biocatalyst derived from Araujia sericifera latex was studied in systems with and without solvent. The influence of the molar ratio between alcohol and acid (ranging from 2:1–1:9), the biocatalyst loading (between 7.5 % and 17.5 % relative to the acid), the volume of n -heptane used as reaction solvent (from 0 to 4 ml), and the reaction time (6 hours) were investigated. The activity and stability of the biocatalyst in successive uses were also analyzed. A conversion of 49 % was achieved when the reaction was carried out in a solvent-free system, using an alcohol/acid molar ratio of 1:7 and after 5 h of reaction. On the other hand, the conversion was 65.1 % when the reaction was conducted in a system containing 1 ml of n -heptane as solvent, an alcohol/acid molar ratio of 1:8, and 5 h of reaction. In both cases, a temperature as low as 30 °C and an agitation speed of 300 RPM were used. • Enzymatic route for levulinic acid esterification using biocatalyst. • Araujia sericifera latex-derived biocatalyst demonstrates high activity. • Achieved 65.1 % conversion of levulinic acid in the synthesis of octyl levulinate. • Solvent-free and n-heptane solvent systems investigated. • Studied reaction parameters for optimal conversion. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF