1. Remote Sensing of Chlorophyll- a in Clear vs. Turbid Waters in Lakes.
- Author
-
Fendereski, Forough, Creed, Irena F., and Trick, Charles G.
- Subjects
- *
ALGAL blooms , *WATER quality , *WATERSHEDS , *LANDSAT satellites , *REMOTE sensing - Abstract
Chlorophyll-a (Chl-a), a proxy for phytoplankton biomass, is one of the few biological water quality indices detectable using satellite observations. However, models for estimating Chl-a from satellite signals are currently unavailable for many lakes. The application of Chl-a prediction algorithms may be affected by the variance in optical complexity within lakes. Using Lake Winnipeg in Canada as a case study, we demonstrated that separating models by the lake's basins [north basin (NB) and south basin (SB)] can improve Chl-a predictions. By calibrating more than 40 commonly used Chl-a estimation models using Landsat data for Lake Winnipeg, we achieved higher correlations between in situ and predicted Chl-a when building models with separate Landsat-to-in situ matchups from NB and SB (R2 = 0.85 and 0.76, respectively; p < 0.05), compared to using matchups from the entire lake (R2 = 0.38, p < 0.05). In the deeper, more transparent waters of the NB, a green-to-blue band ratio provided better Chl-a predictions, while in the shallower, highly turbid SB, a red-to-green band ratio was more effective. Our approach can be used for rapid Chl-a modeling in large lakes using cloud-based platforms like Google Earth Engine with any available satellite or time series length. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF