1. Field effect transistor and photo transistor of narrow band gap nanocrystal arrays using ionic glasses
- Author
-
Nicolas Goubet, Ulrich Nguétchuissi Noumbé, Yoann Prado, Charlie Gréboval, Audrey Chu, Emmanuel Lhuillier, Abdelkarim Ouerghi, Bertille Martinez, Sandrine Ithurria, Junling Qu, Hervé Aubin, Julien Ramade, Clément Livache, Jean-Francois Dayen, Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et Nanotechnologies (C2N (UMR_9001)), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE30-0023,IPER-Nano2,Nanocristaux de perovskite inorganique pour la nanophotonique(2018), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-15-CE09-0014,NanoDoSe,Dopage de Nanocristaux Semiconducteurs par chimie douce(2015), European Project: 756225,blackQD, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,infrared nanocrystal ,Bioengineering ,02 engineering and technology ,Photodetection ,Dielectric ,Capacitance ,HgTe ,law.invention ,field effect transistor ,Operating temperature ,law ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Photocurrent ,business.industry ,Mechanical Engineering ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Photodiode ,Nanocrystal ,ionic glass ,infrared ,Optoelectronics ,Field-effect transistor ,0210 nano-technology ,business ,solid state gating ,LaF3 ,ionic glasses ,HgTe nanocrystal - Abstract
The gating of nanocrystal films is currently driven by two approaches: either the use of a dielectric such as SiO2 or the use of electrolyte. SiO2 allows fast bias sweeping over a broad range of temperatures but requires a large operating bias. Electrolytes, thanks to large capacitances, lead to the significant reduction of operating bias but are limited to slow and quasi-room-temperature operation. None of these operating conditions are optimal for narrow-band-gap nanocrystal-based phototransistors, for which the necessary large-capacitance gate has to be combined with low-temperature operation. Here, we explore the use of a LaF3 ionic glass as a high-capacitance gating alternative. We demonstrate for the first time the use of such ionic glasses to gate thin films made of HgTe and PbS nanocrystals. This gating strategy allows operation in the 180 to 300 K range of temperatures with capacitance as high as 1 μF·cm-2. We unveil the unique property of ionic glass gate to enable the unprecedented tunability of both magnitude and dynamics of the photocurrent thanks to high charge-doping capability within an operating temperature window relevant for infrared photodetection. We demonstrate that by carefully choosing the operating gate bias, the signal-to-noise ratio can be improved by a factor of 100 and the time response accelerated by a factor of 6. Moreover, the good transparency of LaF3 substrate allows back-side illumination in the infrared range, which is highly valuable for the design of phototransistors.
- Published
- 2019