1. Experimental Investigation of Added Resistance of a Ship using a Hydroelastic Body in Waves
- Author
-
Suandar Baso, Andi Ardianti, Andi Dian Eka Anggriani, Rosmani Rosmani, and Lukman Bochary
- Subjects
added resistance ,hydroelastic body ,rigid body ,ship resistance experiment ,total resistance ,Technology ,Technology (General) ,T1-995 - Abstract
Ship resistance is an important characteristic to predict in the preliminary design stage. Proper prediction of ship resistance implies the fulfillment of the required speed and power of a ship. The assumed body characteristics of a ship model should also be properly considered when investigating ship resistance. In the present study, the assumption of a hydroelastic body for a ship model was used in an experiment on total ship resistance and added resistance in calm water and waves. Two hydroelastic models were used: a hydroelastic body with a bulbous bow (HB) and a hydroelastic body without a bulbous bow (HWB). The wavelength considered ranged from 0.5 L to 1.3 L, and the Froude number (Fn) considered ranged from 0.058 to 0.232. In the presented results, the total resistance coefficient of the HWB was higher than that of a rigid body without a bulbous bow (RWB). The average difference of magnitude between the HWB and RWB was 30.49% for calm water conditions and 30.37% for overall wave conditions. The total resistance of the HB was higher than that of the rigid body with a bulbous bow (RB), and the difference of magnitude was approximately 31.47% for calm water conditions and 31.68% for overall wave conditions. The added resistance coefficient of the HWB tended to increase with an increase in the wavelength, from 0.5 L to 1.1 L, and then decrease until 1.5 L. The overall tendency of the added resistance coefficient of the HB was significantly different from the other numerical results. Although the tendencies were different, most of the presented results were in the same range as the other numerical results.
- Published
- 2022
- Full Text
- View/download PDF