1. A Novel Design of a Hybrid Solar Double-Chimney Power Plant for Generating Electricity and Distilled Water.
- Author
-
Abdelsalam, Emad, Almomani, Fares, Ibrahim, Shadwa, Kafiah, Feras, Jamjoum, Mohammad, and Alkasrawi, Malek
- Abstract
The classical solar chimney offers passive electricity and water production at a low operating cost. However, the solar chimney suffers from high capital cost and low energy output density per construction area. The high capital investment increases the levelized cost of energy (LCOE), making the design less economically competitive versus other solar technologies. This work presents a new noteworthy solar chimney design for high energy density and maximizing water production. This was achieved by integrating a cooling tower with the solar chimney and optimizing the operating mood. The new design operated day and night as a hybrid solar double-chimney power plant (HSDCPP) for continuous electricity and water production. During the daytime, the HSDCPP operated as a cooling tower and solar chimney, while during the night, it operated as a cooling tower. The annual energy output from the cooling towers and solar chimney (i.e., the HSDCPP) totaled 1,457,423 kWh. The annual energy production from the cooling towers alone was 1,077,134 kWh, while the solar chimney produced 380,289 kWh. The annual energy production of the HSDCPP was ~3.83-fold greater than that of a traditional solar chimney (380,289 kWh). Furthermore, the HSDCPP produced 172,344 tons of fresh water per year, compared with zero tons in a traditional solar chimney. This led to lower overall capital expenditures maximizing energy production and lower LCOE. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF