10 results on '"human cardiac microvascular endothelial cells"'
Search Results
2. Functional Characterization of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells.
- Author
-
Fan, Xuehui, Cyganek, Lukas, Nitschke, Katja, Uhlig, Stefanie, Nuhn, Philipp, Bieback, Karen, Duerschmied, Daniel, El-Battrawy, Ibrahim, Zhou, Xiaobo, and Akin, Ibrahim
- Subjects
- *
PLURIPOTENT stem cells , *ENDOTHELIAL cells , *INDUCED pluripotent stem cells , *ENZYME-linked immunosorbent assay , *CELL physiology , *ION channels - Abstract
Endothelial cells derived from human induced pluripotent stem cells (hiPSC-ECs) provide a new opportunity for mechanistic research on vascular regeneration and drug screening. However, functions of hiPSC-ECs still need to be characterized. The objective of this study was to investigate electrophysiological and functional properties of hiPSC-ECs compared with primary human cardiac microvascular endothelial cells (HCMECs), mainly focusing on ion channels and membrane receptor signaling, as well as specific cell functions. HiPSC-ECs were derived from hiPS cells that were generated from human skin fibroblasts of three independent healthy donors. Phenotypic and functional comparison to HCMECs was performed by flow cytometry, immunofluorescence staining, quantitative reverse-transcription polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), tube formation, LDL uptake, exosome release assays and, importantly, patch clamp techniques. HiPSC-ECs were successfully generated from hiPS cells and were identified by endothelial markers. The mRNA levels of KCNN2, KCNN4, KCNMA1, TRPV2, and SLC8A1 in hiPSC-ECs were significantly higher than HCMECs. AT1 receptor mRNA level in hiPSC-ECs was higher than in HCMECs. AT2 receptor mRNA level was the highest among all receptors. Adrenoceptor ADRA2 expression in hiPSC-ECs was lower than in HCMECs, while ADRA1, ADRB1, ADRB2, and G-protein GNA11 and Gai expression were similar in both cell types. The expression level of muscarinic and dopamine receptors CHRM3, DRD2, DRD3, and DRD4 in hiPSC-ECs were significantly lower than in HCMECs. The functional characteristics of endothelial cells, such as tube formation and LDL uptake assay, were not statistically different between hiPSC-ECs and HCMECs. Phenylephrine similarly increased the release of the vasoconstrictor endothelin-1 (ET-1) in hiPSC-ECs and HCMECs. Acetylcholine also similarly increased nitric oxide generation in hiPSC-ECs and HCMECs. The resting potentials (RPs), ISK1–3, ISK4 and IK1 were similar in hiPSC-ECs and HCMECs. IBK was larger and IKATP was smaller in hiPSC-ECs. In addition, we also noted a higher expression level of exosomes marker CD81 in hiPSC-ECs and a higher expression of CD9 and CD63 in HCMECs. However, the numbers of exosomes extracted from both types of cells did not differ significantly. The study demonstrates that hiPSC-ECs are similar to native endothelial cells in ion channel function and membrane receptor-coupled signaling and physiological cell functions, although some differences exist. This information may be helpful for research using hiPSC-ECs. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
3. Functional Characterization of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells
- Author
-
Xuehui Fan, Lukas Cyganek, Katja Nitschke, Stefanie Uhlig, Philipp Nuhn, Karen Bieback, Daniel Duerschmied, Ibrahim El-Battrawy, Xiaobo Zhou, and Ibrahim Akin
- Subjects
human-induced pluripotent stem-derived endothelial cells ,human cardiac microvascular endothelial cells ,ion channel ,endotheline-1 ,nitric oxide ,exosome ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Endothelial cells derived from human induced pluripotent stem cells (hiPSC-ECs) provide a new opportunity for mechanistic research on vascular regeneration and drug screening. However, functions of hiPSC-ECs still need to be characterized. The objective of this study was to investigate electrophysiological and functional properties of hiPSC-ECs compared with primary human cardiac microvascular endothelial cells (HCMECs), mainly focusing on ion channels and membrane receptor signaling, as well as specific cell functions. HiPSC-ECs were derived from hiPS cells that were generated from human skin fibroblasts of three independent healthy donors. Phenotypic and functional comparison to HCMECs was performed by flow cytometry, immunofluorescence staining, quantitative reverse-transcription polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), tube formation, LDL uptake, exosome release assays and, importantly, patch clamp techniques. HiPSC-ECs were successfully generated from hiPS cells and were identified by endothelial markers. The mRNA levels of KCNN2, KCNN4, KCNMA1, TRPV2, and SLC8A1 in hiPSC-ECs were significantly higher than HCMECs. AT1 receptor mRNA level in hiPSC-ECs was higher than in HCMECs. AT2 receptor mRNA level was the highest among all receptors. Adrenoceptor ADRA2 expression in hiPSC-ECs was lower than in HCMECs, while ADRA1, ADRB1, ADRB2, and G-protein GNA11 and Gai expression were similar in both cell types. The expression level of muscarinic and dopamine receptors CHRM3, DRD2, DRD3, and DRD4 in hiPSC-ECs were significantly lower than in HCMECs. The functional characteristics of endothelial cells, such as tube formation and LDL uptake assay, were not statistically different between hiPSC-ECs and HCMECs. Phenylephrine similarly increased the release of the vasoconstrictor endothelin-1 (ET-1) in hiPSC-ECs and HCMECs. Acetylcholine also similarly increased nitric oxide generation in hiPSC-ECs and HCMECs. The resting potentials (RPs), ISK1–3, ISK4 and IK1 were similar in hiPSC-ECs and HCMECs. IBK was larger and IKATP was smaller in hiPSC-ECs. In addition, we also noted a higher expression level of exosomes marker CD81 in hiPSC-ECs and a higher expression of CD9 and CD63 in HCMECs. However, the numbers of exosomes extracted from both types of cells did not differ significantly. The study demonstrates that hiPSC-ECs are similar to native endothelial cells in ion channel function and membrane receptor-coupled signaling and physiological cell functions, although some differences exist. This information may be helpful for research using hiPSC-ECs.
- Published
- 2022
- Full Text
- View/download PDF
4. Protective Effects of MicroRNA-126 on Human Cardiac Microvascular Endothelial Cells Against Hypoxia/Reoxygenation-Induced Injury and Inflammatory Response by Activating PI3K/Akt/eNOS Signaling Pathway
- Author
-
Hong-Hui Yang, Yan Chen, Chuan-Yu Gao, Zhen-Tian Cui, and Jian-Min Yao
- Subjects
MicroRNA-126 ,PI3K ,Akt ,eNOS ,Human cardiac microvascular endothelial cells ,Inflammatory response ,Physiology ,QP1-981 ,Biochemistry ,QD415-436 - Abstract
Objective: This study explored the protective effects of the microRNA-126 (miR-126)-mediated PI3K/Akt/eNOS signaling pathway on human cardiac microvascular endothelial cells (HCMECs) against hypoxia/reoxygenation (H/R)-induced injury and the inflammatory response. Methods: Untreated HCMECs were selected for the control group. After H/R treatment and cell transfection, the HCMECs were assigned to the H/R, miR-126 mimic, mimic-negative control (NC), miR-126 inhibitor, inhibitor-NC, wortmannin (an inhibitor of PI3K) and miR-126 mimic + wortmannin groups. Super oxide dismutase (SOD), nitric oxide (NO), vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS) were measured utilizing commercial kits. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to detect miR-126 expression and the mRNA and protein expression of inflammatory factors. Western blotting was used to determine the expression of key members in the PI3K/Akt/eNOS signaling pathway. ACCK-8 assay and flow cytometry were employed to examine cell proliferation and apoptosis, respectively. The angiogenic ability in each group was detected by the lumen formation test. Results: Compared to the control group, p/t-PI3K, p/t-Akt and p/t-eNOS expression, NO, VEGF and SOD levels, cell proliferation and in vitro lumen formation ability were decreased, while the ROS content, interleukin (IL)-6, IL-10 and tumor necrosis factor (TNF)-α expression and cell apoptosis were significantly increased in the H/R, mimic-NC, miR-126 inhibitor, inhibitor-NC, wortmannin and miR-126 mimic + wortmannin groups. Additionally, in comparison with the H/R group, the miR-126 mimic group had elevated p/t-PI3K, p/t-Akt and p/t-eNOS expression, increased NO, VEGF and SOD contents, and strengthened cell proliferation and lumen formation abilities but also exhibited decreased ROS content, reduced IL-6, IL-10 and TNF-α expressions, and weakened cell apoptosis, while the miR-126 inhibitor and wortmannin group exhibited the opposite results. Furthermore, decreased p/t-PI3K, p/t-Akt and p/t-eNOS expressions, decreased NO, VEGF and SOD contents, cell proliferation and lumen formation abilities, as well as increased ROS content, increased IL-6, IL-10 and TNF-α expression, and increased cell apoptosis were observed in the miR-126 mimic + wortmannin group compared to themiR-126 mimic group. Conclusions: These findings indicated that miR-126 protects HCMECs from H/R-induced injury and inflammatory response by activating the PI3K/Akt/ eNOS signaling pathway.
- Published
- 2017
- Full Text
- View/download PDF
5. Pure ultra-fine carbon particles do not exert pro-coagulation and inflammatory effects on microvascular endothelial cells.
- Author
-
Dinmohammadi, Hossein, Pirdel, Zahra, Salarilak, Laleh, Hoylaerts, Marc, Nejatbakhsh, Reza, Biglari, Alireza, Jacquemin, Marc, and Shahani, Tina
- Subjects
AIR pollution ,PARTICULATE matter ,ENDOTHELIAL cells ,BLOOD platelets ,PHAGOCYTOSIS - Abstract
Pro-thrombotic and inflammatory changes play an important role in cardiovascular morbidity and mortality, resulting from short-term exposure to fine particulate air-pollution. Part of those effects has been attributed to the ultra-fine particles (UFPs) that pass through the lung and directly contact blood-exposed and circulating cells. Despite UFP-induced platelet activation, it is unclear whether the penetrated particles exert any direct effect on endothelial cells. While exposure levels are boosting as a result of world-wide increases in economic development and desertification, which create more air-polluted regions, as well as increase in demands for synthetic UFPs in medicine and various industries, further studies on the health effects of these particles are required. In this study, human pulmonary and cardiac microvascular endothelial cells (MECs) have been exposed to 0.1, 1, 10, and 100 μg/ml suspensions of either a natural (carbon black) or a synthetic (multi-walled carbon nano-tubes) type of UFPs, in vitro. As a result, no changes in the levels of coagulation factor VIII, Von Willebrand factor, Interleukin 8, and P-selectin measured in the cells' supernatant were observed prior to and 6, 12, and 24 h after exposure. In parallel, the spatio-temporal effect of UFPs on cardiac MECs was evaluated by Transmission Electron Microscopy. Despite phagocytic uptake of pure UFPs observed on cellular sections of the treated cells, Weibel-Palade bodies remained intact in shape and similar in number when compared with the untreated cells. Our work shows that carbon itself is a non-toxic carrier for endothelial cells. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
6. Protective Effects of MicroRNA-126 on Human Cardiac Microvascular Endothelial Cells Against Hypoxia/Reoxygenation-Induced Injury and Inflammatory Response by Activating PI3K/Akt/eNOS Signaling Pathway.
- Author
-
Yang, Hong-Hui, Chen, Yan, Gao, Chuan-Yu, Cui, Zhen-Tian, and Yao, Jian-Min
- Subjects
- *
MICRORNA , *HYPOXEMIA , *HEART cells , *CELLULAR signal transduction , *SUPEROXIDE dismutase , *INFLAMMATION , *ENZYME-linked immunosorbent assay , *VASCULAR endothelial growth factors , *PHYSIOLOGY , *THERAPEUTICS - Abstract
Objective: This study explored the protective effects of the microRNA-126 (miR-126)- mediated PI3K/Akt/eNOS signaling pathway on human cardiac microvascular endothelial cells (HCMECs) against hypoxia/reoxygenation (H/R)-induced injury and the inflammatory response. Methods: Untreated HCMECs were selected for the control group. After H/R treatment and cell transfection, the HCMECs were assigned to the H/R, miR-126 mimic, mimicnegative control (NC), miR-126 inhibitor, inhibitor-NC, wortmannin (an inhibitor of PI3K) and miR-126 mimic + wortmannin groups. Super oxide dismutase (SOD), nitric oxide (NO), vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS) were measured utilizing commercial kits. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to detect miR-126 expression and the mRNA and protein expression of inflammatory factors. Western blotting was used to determine the expression of key members in the PI3K/Akt/eNOS signaling pathway. ACCK- 8 assay and flow cytometry were employed to examine cell proliferation and apoptosis, respectively. The angiogenic ability in each group was detected by the lumen formation test. Results: Compared to the control group, p/t-PI3K, p/t-Akt and p/t-eNOS expression, NO, VEGF and SOD levels, cell proliferation and in vitro lumen formation ability were decreased, while the ROS content, interleukin (IL)-6, IL-10 and tumor necrosis factor (TNF)-α expression and cell apoptosis were significantly increased in the H/R, mimic-NC, miR-126 inhibitor, inhibitor- NC, wortmannin and miR-126 mimic + wortmannin groups. Additionally, in comparison with the H/R group, the miR-126 mimic group had elevated p/t-PI3K, p/t-Akt and p/t-eNOS expression, increased NO, VEGF and SOD contents, and strengthened cell proliferation and lumen formation abilities but also exhibited decreased ROS content, reduced IL-6, IL-10 and TNF-α expressions, and weakened cell apoptosis, while the miR-126 inhibitor and wortmannin group exhibited the opposite results. Furthermore, decreased p/t-PI3K, p/t-Akt and p/t-eNOS expressions, decreased NO, VEGF and SOD contents, cell proliferation and lumen formation abilities, as well as increased ROS content, increased IL-6, IL-10 and TNF-α expression, and increased cell apoptosis were observed in the miR-126 mimic + wortmannin group compared to themiR-126 mimic group. Conclusions: These findings indicated that miR-126 protects HCMECs from H/R-induced injury and inflammatory response by activating the PI3K/Akt/ eNOS signaling pathway. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
7. Astragalus polysaccharide protects human cardiac microvascular endothelial cells from hypoxia/reoxygenation injury: The role of PI3K/AKT, Bax/Bcl-2 and caspase-3.
- Author
-
LIANDI XIE, YANG WU, ZONGJING FAN, YANG LIU, and JIXIANG ZENG
- Subjects
- *
POLYSACCHARIDES , *ENDOTHELIAL cells , *HYPOXEMIA , *NITRIC oxide , *MALONDIALDEHYDE , *SUPEROXIDE dismutase , *PROTEIN kinase B - Abstract
In the present study, the mechanisms associated with the Astragalus polysaccharide (APS)-mediated protection of human cardiac microvascular endothelial cells (HCMEC) against hypoxia/reoxygenation (HR) injury were investigated. Pretreatment of HCMECs with APS at various concentrations was performed prior to Na2S2O4-induced HR injury. Subsequently, cell viability and apoptosis were measured by MTT and Hoechst assays, respectively. The viability of HCMECs was reduced by Na2S2O4 and apoptosis was enhanced; however, cell viability was observed to be increased by APS via inhibition of apoptosis. Additionally, intracellular reactive oxygen species (ROS), Ca2+, nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax) and caspase-3 were measured using detection kits or western blot analysis. In HCMECs with HR injury, the levels of ROS and Ca2+, MDA and Bax expression levels, and the activity of caspase-3 were elevated. By contrast, the level of NO, the protein expression levels of SOD, Bcl-2 and PI3K, and the phosphorylation of AKT were decreased. However, compared with the HR group, the effects of HR injury were significantly reduced by APS, with APS providing a protective effect on HCMECs, particularly at higher doses. The current study concluded that APS protects HCMECs from Na2S2O4-induced HR injury by reducing the levels of ROS, Ca2+, MDA and Bax, inhibiting the activity of caspase-3, and enhancing the levels of NO, SOD, Bcl-2, PI3K and phosphorylated AKT. These results may provide an insight into the clinical application of APS and novel therapeutic strategies for HR injury. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
8. Macrophages Aggravate Hypoxia-Induced Cardiac Microvascular Endothelial Cell Injury via Peroxynitrite: Protection by Tongxinluo.
- Author
-
Wang, Xiujuan, Liu, Kun, Li, Bin, Li, Yanning, Ye, Kaiwei, Qi, Jinsheng, and Wang, Yu
- Subjects
- *
MACROPHAGES , *HYPOXIA-inducible factors , *ENDOTHELIAL cells , *PEROXYNITRITE , *ENDOTHELIUM diseases , *PROSTACYCLIN , *CHEMICAL decomposition - Abstract
Activated macrophages contribute to endothelial dysfunction; however, it is unclear how peroxynitrite contributes to macrophage-mediated human cardiac microvascular endothelial cell (HCMEC) injury in hypoxia. In macrophage-HCMEC co-cultures subjected to hypoxia, there was an increase in hypoxia-inducible factor (HIF)-1α, HIF-2α, inducible nitric oxide synthase (iNOS), endothelin-converting enzyme (ECE)-1 and cyclooxygenase-2 (COX-2), and concomitant decrease in prostacyclin synthase (PGIS). This was mimicked by a peroxynitrite donor and attenuated by its decomposition catalyst. Tongxinluo (TXL) could decrease HIF-2α, iNOS, ECE-1 and COX-2 and increase PGIS in a dose-dependent manner, with increase of vascular endothelial growth factor. The protein alterations verified the remarkably affected mRNAs, indicating that the effects of TXL were similar to but better than that of peroxynitrite decomposition catalyst. Furthermore, TXL inhibited macrophage-mediated nitrotyrosine accumulation and attenuated HCMEC injury. The results suggest that peroxynitrite contributes to macrophage-mediated HCMEC injury in hypoxia, and TXL attenuates HCMEC injury mainly by inhibiting peroxynitrite. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
9. Tongxinluo (TXL), a Traditional Chinese Medicinal Compound, Improves Endothelial Function After Chronic Hypoxia Both In Vivo and In Vitro
- Author
-
Chang Wang, Cui-ying Zheng, Pei-Pei Zhou, Jin-kun Wen, Bin Zheng, Dong Ma, Yong-hui Li, Zong-Wei Guo, Li-Min Li, and Li-li Song
- Subjects
Male ,tight junction protein ,Pathology ,medicine.medical_specialty ,Endothelium ,Angiogenesis ,Kruppel-Like Transcription Factors ,Neovascularization, Physiologic ,Pharmacology ,Biology ,Occludin ,Transfection ,Tight Junctions ,Neovascularization ,Kruppel-Like Factor 4 ,Downregulation and upregulation ,In vivo ,medicine ,Animals ,Humans ,Phosphorylation ,Hypoxia ,Cells, Cultured ,Cell Proliferation ,Tight Junction Proteins ,Tight junction ,Dose-Response Relationship, Drug ,human cardiac microvascular endothelial cells ,Endothelial Cells ,KLF4 ,Cell Hypoxia ,Endothelial stem cell ,Mice, Inbred C57BL ,Disease Models, Animal ,medicine.anatomical_structure ,Gene Expression Regulation ,Chronic Disease ,chronic hypoxia ,Angiogenesis Inducing Agents ,Original Article ,Endothelium, Vascular ,medicine.symptom ,TXL ,Cardiology and Cardiovascular Medicine ,Drugs, Chinese Herbal - Abstract
Vascular injury after chronic hypoxia leads to endothelial injury and structural damage to tight junctions (TJs), thereby resulting in a variety of cardiovascular diseases. Thus, attenuating hypoxia-induced damage has great significance for the prevention and treatment of cardiovascular disease. The aim of this study was to investigate whether the endothelial protection conferred by tongxinluo (TXL), a traditional Chinese medicinal compound, is related to its regulation of TJ protein expression. In vivo, we found that TXL could promote hypoxia-induced angiogenesis in lung and liver tissue. In vitro, we found that CoCl2 treatment significantly reduced the expression of the TJ proteins occludin, claudin-1, VE-cadherin, and beta-catenin in cultured human cardiac microvascular endothelial cells. TXL pretreatment abrogated the CoCl2-induced downregulation of these TJ proteins. Conversely, overexpression of Krüppel-like factor 4 (KLF4) inhibited the expression of TJ proteins in human cardiac microvascular endothelial cells, an effect that was reversed by TXL pretreatment. Further experiments showed that TXL could promote endothelial cell proliferation by increasing KLF4 phosphorylation, thereby reversing the effect of KLF4 on the expression of TJ proteins. These findings provide a new molecular mechanism for the TXL-induced increase in TJ protein expression.
- Published
- 2015
10. Chinese medicine Tongxinluo reduces atherosclerotic lesion by attenuating oxidative stress and inflammation in microvascular endothelial cells.
- Author
-
Wu XL, Zheng B, Jin LS, Zhang RN, He M, Yang Z, and Wen JK
- Subjects
- Animals, Apolipoproteins E deficiency, Apolipoproteins E genetics, Blotting, Western, Disease Models, Animal, Enzyme-Linked Immunosorbent Assay, Humans, Immunohistochemistry, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Reverse Transcriptase Polymerase Chain Reaction, Atherosclerosis pathology, Drugs, Chinese Herbal pharmacology, Endothelial Cells drug effects, Inflammation pathology, Oxidative Stress drug effects
- Abstract
Oxidative stress and inflammation are the important pathological basis of atherogenesis. So, attenuating oxidative stress and inflammation has a very important significance in the prevention and treatment of atherosclerosis. The aim of present study was to investigate whether anti-atherosclerotic effect of Tongxinluo (TXL), a compound traditional Chinese medicine, is related to its anti-oxidation and anti-inflammation in human cardiac microvascular endothelial cells (HCMEC). We found that TXL treatment significantly reduced serum lipid levels and atherosclerotic plaque formation of apoE-deficient mice, and improved endothelial cell function as evidenced by increased expression of CD31 and eNOS. TXL pretreatment could abrogate the up-regulation of ROS and MDA induced by C16. Further experiments showed that the anti-oxidative effect of TXL may be related to inhibiting the expression of p22(phox), p47(phox) and HO-1 in HCMECs. We also found that TXL could inhibit the release of IL-1β and TNFα induced by C16, which is mediated by inhibiting the expression and activation of NF-κB. In conclusion, TXL decreases atherosclerotic plaque formation and improves endothelial cell function by inhibiting oxidative stress and inflammation in HCMECs. This finding provides a new molecular mechanism for the anti-atherosclerotic effect of TXL.
- Published
- 2015
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.