1. Sustainability of tongue-and-groove walls with buttresses
- Author
-
Hanna Slobodianyk and Nataliia Dolynska
- Subjects
Buttress ,deep-water berth ,Plane (geometry) ,business.industry ,lcsh:T ,tongue-and-groove wall ,Tongue and groove ,Rigidity (psychology) ,holding forces of buttresses ,Structural engineering ,stability ,Mooring ,lcsh:Technology ,rigidity ,buttresses ,Bending moment ,Bearing capacity ,business ,Joint (geology) ,Geology - Abstract
The development of ports requires the construction of more and more deep-sea berthing facilities or the reconstruction of existing ones for servicing modern large-capacity ships. Traditional design solutions for deep-water berths are labor-intensive and material-intensive. The article describes the design of a deep-water berth in the form of tongue-and-groove wall with buttresses. Buttresses can be rectangular, trapezoidal with the extension downwards and trapezoidal with the extension upwards. The use of buttresses in the construction reduces the lateral pressure of the soil, increases the rigidity of the structure, and also increases the stability of the structure as a whole. The rational distribution of materials along the length of the structure and the unification of the elements leads to cheaper construction and a fast pace of construction. This solution can be used both in the construction of new berthing facilities and in the reconstruction of existing ones. The development of the calculated justification of the stability of the tongue-and-groove wall with buttresses, which optimally reflects the specificity of the structure, is carried out. Buttresses are an additional factor affecting the stability of the tongue-and-groove wall. Then, the stability of the structure as a whole depends on the resistance forces of the soil, arising in the plane of contact with the front wall and the resistance forces of the soil within the width of the buttress and involved, due to friction forces, in the joint work of the adjacent soil volumes. In order to determine the holding forces of the buttresses, experimental laboratory studies were conducted. Analysis of the results of the experiments shows that the trapezoidal buttresses with extension downwards have the greatest holding power. As a result of the mathematical modeling, the displacements of the wall and bending moments are plotted depending on the height of the buttresses. Thus, the design of the mooring structure of the innovative type can be used to create an economically deep-water berth with increased bearing capacity, which will be able to perceive modern ships with a large deadweight
- Published
- 2018