1. A Hidden Convexity of Nonlinear Elasticity.
- Author
-
Singh, Siddharth, Ginster, Janusz, and Acharya, Amit
- Subjects
VARIATIONAL principles ,KIRCHHOFF'S theory of diffraction ,DUALITY theory (Mathematics) ,ELASTODYNAMICS ,ELASTICITY - Abstract
A technique for developing convex dual variational principles for the governing PDE of nonlinear elastostatics and elastodynamics is presented. This allows the definition of notions of a variational dual solution and a dual solution corresponding to the PDEs of nonlinear elasticity, even when the latter arise as formal Euler–Lagrange equations corresponding to non-quasiconvex elastic energy functionals whose energy minimizers do not exist. This is demonstrated rigorously in the case of elastostatics for the Saint-Venant Kirchhoff material (in all dimensions), where the existence of variational dual solutions is also proven. The existence of a variational dual solution for the incompressible neo-Hookean material in 2-d is also shown. Stressed and unstressed elastostatic and elastodynamic solutions in 1 space dimension corresponding to a non-convex, double-well energy are computed using the dual methodology. In particular, we show the stability of a dual elastodynamic equilibrium solution for which there are regions of non-vanishing length with negative elastic stiffness, i.e. non-hyperbolic regions, for which the corresponding primal problem is ill-posed and demonstrates an explosive 'Hadamard instability;' this appears to have implications for the modeling of physically observed softening behavior in macroscopic mechanical response. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF