1. Developments for pulsed antihydrogen production towards direct gravitational measurement on antimatter
- Author
-
Alberto Rotondi, S. Müller, G. Nebbia, Davide Pagano, O. Khalidova, Massimo Caccia, L. Povolo, Giovanni Consolati, V. Toso, Germano Bonomi, Heidi Sandaker, V. Petráček, A. Hinterberger, L. T. Glöggler, Sebastiano Mariazzi, B. Rienäcker, C. Zimmer, L. Di Noto, Marco Giammarchi, Marco Prevedelli, M. Antonello, Chloé Malbrunot, G. Testera, Angela Gligorova, Ole Røhne, Nicola Zurlo, Sebastian Gerber, Fabrizio Castelli, Alban Kellerbauer, A. S. Belov, I. C. Tietje, D. Krasnicky, V. Lagomarsino, M. Fanì, L. Nowak, Romualdo Santoro, Michael Doser, Patrick Nedelec, E. Oswald, J. Fesel, V. Matveev, S. Haider, P. Cheinet, A. Demetrio, F. Guatieri, Luca Penasa, A. Camper, F. Prelz, Daniel Comparat, Ruggero Caravita, T. Wolz, Markus K. Oberthaler, R. S. Brusa, Rafael Ferragut, Fani M., Antonello M., Belov A., Bonomi G., Brusa R.S., Caccia M., Camper A., Caravita R., Castelli F., Comparat D., Cheinet P., Consolati G., Demetrio A., Di Noto L., Doser M., Ferragut R., Fesel J., Gerber S., Giammarchi M., Gligorova A., Gloggler L.T., Guatieri F., Haider S., Hinterberger A., Kellerbauer A., Khalidova O., Krasnicky D., Lagomarsino V., Malbrunot C., Nowak L., Mariazzi S., Matveev V., Muller S.R., Nebbia G., Nedelec P., Oberthaler M., Oswald E., Pagano D., Penasa L., Petracek V., Povolo L., Prelz F., Prevedelli M., Rienacker B., Rohne O.M., Rotondi A., Sandaker H., Santoro R., Testera G., Tietje I.C., Toso V., Wolz T., Zimmer C., Zurlo N., Laboratoire Aimé Cotton (LAC), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Gravity (chemistry) ,Physics::General Physics ,Antimatter ,experimental methods ,Gravity ,Antiproton ,magnetic field ,Positronium ,01 natural sciences ,010305 fluids & plasmas ,Nuclear physics ,Gravitation ,temperature: low ,0103 physical sciences ,general relativity ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Physics::Atomic and Molecular Clusters ,Physics::Atomic Physics ,010306 general physics ,Antihydrogen ,Mathematical Physics ,Physics ,gravitation: interaction ,antihydrogen: production ,talk: Kolymbari 2019/08/21 ,sensitivity ,charge exchange ,Condensed Matter Physics ,pulsed ,Atomic and Molecular Physics, and Optics ,anti-p ,equivalence principle ,gravitation: acceleration ,gravitation: local ,experimental results - Abstract
International audience; A main scientific goal of the experiment is the direct measurement of the Earth’s local gravitational acceleration g on antihydrogen. The Weak Equivalence Principle is a foundation of General Relativity. It has been extensively tested with ordinary matter but very little is known about the gravitational interaction between matter and antimatter. Antihydrogen is produced in via resonant charge-exchange reaction between cold Rydberg-excited positronium and cooled down antiprotons. The achievements for the development of a pulsed cold antihydrogen source are presented. Large number of antiprotons, necessary for a significant production rate of antihydrogen, are captured, accumulated, compressed and cooled over an extended period of time. Positronium (Ps) is formed through e$^{+}$-Ps conversion in a silica porous target at 10 K temperature in a reflection geometry inside the main apparatus. The so-formed Ps cloud is then laser-excited to Rydberg levels, for the first time in a 1 T magnetic field. Consequently, a detailed characterization of the Ps source for antihydrogen production in magnetic field needed to be performed. Several detection techniques are extensively used to monitor antiproton and positron manipulations in the formation process of antihydrogen inside the main apparatus. Positronium detection techniques underwent extensive improvements in sensitivity during the last antiproton run. At the same time, major efforts to improve integrate and commission the detectors sensitive to antihydrogen production took place.
- Published
- 2020
- Full Text
- View/download PDF