1. Hybrid deep model for predicting anti-cancer drug efficacy in colorectal cancer patients.
- Author
-
Karthikeyan, A., Jothilakshmi, S., and Suthir, S.
- Subjects
- *
CONVOLUTIONAL neural networks , *DATA distribution , *CANCER-related mortality , *DRUG efficacy , *COLORECTAL cancer - Abstract
Cancers are genetically diversified, so anticancer treatments have different levels of efficacy on people due to genetic differences. The main objective of this work is to predict the anticancer drug efficiency for colorectal cancer patients to reduce the mortality rates and provides immune energy for the patients. This paper proposes a novel anti-cancer drug efficacy system in colorectal cancer patients. The input data gene is normalized with the Min–Max normalization technique that normalizes the data in distinct scales. Subsequently, proposes an improved entropy-based feature to evaluate the uncertainty distribution of data, in which it induces weight to overcome the issue of computational complexity. Along with this feature, a correlation-based feature and statistical features are also retrieved. Subsequently, proposes a Recursive Feature Elimination with Hybrid Machine Learning (RFEHML) mechanism for selecting the appropriate feature set by eliminating the recursive features with the aid of hybrid Machine Learning strategies that combine decision tree and logistic regression. Also, the Gini impurity is employed for ranking the feature and selecting the maximum importance score by eliminating the least acquired importance score. Further, proposes a hybrid model for predicting the drug efficiency with the trained feature set. The hybrid model comprises of Long Short-Term Memory (LSTM) and Updated Rectified Linear Unit-Deep Convolutional Neural Network (UReLU-DCNN) model, in which DCNN is modified by updating the activation function at the fully connected layer. Consequently, the learned feature predicts the drug efficacy of anti-cancer in colorectal cancer patients by determining whether the patient is a responder or non-responder of the drug. Finally, the performance of the proposed RFEHML model is compared with other traditional approaches. It is found that the developed method has higher accuracy for each learning percentage, with values of 60LP = 92.48%, 70LP = 94.28%, 80LP = 95.24%, and 90LP = 96.86%, respectively. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF