1. Variable s(·)‐order Kirchhoff‐type problem with a p(·)‐fractional Laplace operator.
- Author
-
Mirzapour, Maryam, Alizadeh Afrouzi, Ghasem, and Xu, Jiafa
- Abstract
This paper deals with the existence and multiplicity of weak solutions for the following Kirchhoff‐type problem M∬ℝ2N1p(x,y)|u(x)−u(y)|p(x,y)|x−y|N+s(x,y)p(x,y)dxdy(−Δ)p(·)s(·)u(x)=f(x,u)inΩ,u(x)=0inℝN\Ω,$$ \left\{\begin{array}{ll}M\left({\iint}_{{\mathrm{\mathbb{R}}}^{2N}}\frac{1}{p\left(x,y\right)}\frac{{\left|u(x)-u(y)\right|}^{p\left(x,y\right)}}{{\left|x-y\right|}^{N+s\left(x,y\right)p\left(x,y\right)}}\kern0.1em dx\kern0.1em dy\right){\left(-\Delta \right)}_{p\left(\cdotp \right)}^{s\left(\cdotp \right)}u(x)=f\left(x,u\right)& \kern0.1em \mathrm{in}\kern0.4em \Omega, \\ {}u(x)=0& \kern0.1em \mathrm{in}\kern0.4em {\mathrm{\mathbb{R}}}^N\backslash \Omega, \end{array}\right. $$where M$$ M $$ models a Kirchhoff coefficient and (−Δ)p(·)s(·)$$ {\left(-\Delta \right)}_{p\left(\cdotp \right)}^{s\left(\cdotp \right)} $$ is a variable s(·)$$ s\left(\cdotp \right) $$‐order p(·)$$ p\left(\cdotp \right) $$‐fractional Laplace operator, with s(·):ℝ2N→(0,1)$$ s\left(\cdotp \right):{\mathrm{\mathbb{R}}}^{2N}\to \left(0,1\right) $$ and p(·):ℝ2N→(1,∞)$$ p\left(\cdotp \right):{\mathrm{\mathbb{R}}}^{2N}\to \left(1,\infty \right) $$. Here, Ω⊂ℝN$$ \Omega \subset {\mathrm{\mathbb{R}}}^N $$ is a bounded smooth domain with N>s(x,y)p(x,y)$$ N>s\left(x,y\right)p\left(x,y\right) $$ for any (x,y)∈Ω‾×Ω‾$$ \left(x,y\right)\in \overline{\Omega}\times \overline{\Omega} $$. By using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle in two cases when the Carathéodory function f(x,u)$$ f\left(x,u\right) $$ having special structure, we establish conditions ensuring the multiplicity results. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF