1. What can the shell tell about the scallop? Using growth trajectories along latitudinal and bathymetric gradients to reconstruct physiological history with DEB theory
- Author
-
Aurélie Jolivet, Fred Jean, Eric Rannou, Øivind Strand, Romain Lavaud, Jonathan Flye-Sainte-Marie, Fisheries and Oceans Canada (DFO), Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques de Bretagne Atlantique (LMBA), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Institute of Marine Research [Bergen] (IMR), University of Bergen (UiB), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and ANR-11-LABX-0020,LEBESGUE,Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation(2011)
- Subjects
0106 biological sciences ,crassostrea-gigas ,sea ,Dynamic energy budget ,coastal waters ,Growth ,Aquatic Science ,Biology ,energy budget model ,Oceanography ,Spatial distribution ,010603 evolutionary biology ,01 natural sciences ,bivalve ,Life history theory ,Sclerochronology ,Environmental reconstruction ,Phytoplankton ,Bathymetric gradient ,Pecten maximus ,great scallop ,Ecology, Evolution, Behavior and Systematics ,pecten-maximus ,010604 marine biology & hydrobiology ,food ,ACL ,Modeling ,Pelagic zone ,biology.organism_classification ,Latitudinal gradient ,Benthic zone ,feeding-activity ,phytoplankton ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Dynamic Energy Budget - Abstract
WOS:000453497600019; International audience; The great scallop, Pecten maximus, presents a strong variability of growth and reproductive patterns along its spatial distribution range. Such differences in life history traits result from complex interactions between organisms and environmental conditions that can be apprehended through the study of energy dynamics. As the determination of accurate food proxy can be a limitation for modeling bioenergetic, recent work by Lavaud et al. (accepted, this issue), based on the DEB theory, provided a new approach consisting of using temperature and growth time series to reconstruct the required assimilated energy to support observed growth. In this study we present an application of this method to growth trajectories of the great scallop P. maximus used to elucidate: (1) life history traits patterns and (2) the choice of food availability proxies. The inverted DEB model was used to reconstruct the functional response (f) for different age classes of P. maximus in 10 locations of its spatial distribution range. We especially explored the patterns of reconstructed f along latitudinal and bathymetric gradients. Average reconstructed f as well as its maximum value were found to increase with latitude. The variability off, although increasing, did not show a significant relationship with the geographical position. Along the bathymetric gradient strong positive relationships were found between the mean f or its variability and depth. Ontogeny had low effect on the reconstructed f. Furthermore, as the inverted DEB model allows the reconstruction of physiological variables and energy fluxes, we explored the potential differences in reserve and maintenance fluxes dynamics from great scallops living in these contrasting environments. For one of the study sites, comparisons of f with field measurements of 11 food indicators (chlorophyll-a from the pelagic/benthic domains, phytoplankton cell counts, etc.) highlighted the complexity of the functional response and the diet of P. maximus. Pelagic or benthic phytoplankton biovolume, diatoms and dinoflagellates counts and chlorophyll-a were found to be the major contributors to the variability of f. Results suggest that although assimilation is best described by a combination of indicators, chlorophyll-a remains a good enough indicator of food availability for great scallops and bivalves in general.
- Published
- 2019
- Full Text
- View/download PDF