Giner Maravilla, Eugenio, Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials, Palomar Toledano, Marta, Giner Maravilla, Eugenio, Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials, and Palomar Toledano, Marta
[ES] Las cargas de impacto son la fuente primaria de lesiones en la cabeza y pueden resultar en un rango de traumatismo desde leve hasta severo. Debido a la existencia de múltiples entornos en los que se pueden desencadenar lesiones por impacto (accidentes automovilísticos, deportes, caídas accidentales, violencia), éstas pueden afectar potencialmente a toda la población independientemente de su estado de salud. Pese al creciente esfuerzo en investigación para comprender la biomecánica de las lesiones por traumatismo en la cabeza, todavía no es del todo posible realizar predicciones precisas ni prevenir estos eventos. En esta Tesis, se han estudiado algunos aspectos del comportamiento ante impacto de los diferentes tejidos biológicos involucrados mediante el desarrollo de un modelo numérico de cabeza humana a partir de imágenes de tomografía computerizada (TAC). Se han realizado simulaciones en elementos finitos (EF) de ensayos experimentales de la literatura con el fin de validar el modelo numérico desarrollado, estableciendo unas propiedades mecánicas adecuadas para cada uno de sus constituyentes. De esta manera se puede adquirir una predicción adecuada del riesgo de sufrir daños. Parte de esta Tesis se centra en el entorno balístico, específicamente en cascos de combate antibalas, los cuales son susceptibles de causar traumatismo craneoencefálico debido a la elevada deformación que sufren durante el impacto. Previamente al estudio de estos fenómenos de alta velocidad, se han realizado ensayos experimentales y numéricos para caracterizar la respuesta mecánica de algunos materiales compuestos ante impacto de baja velocidad. Al principio de esta Tesis se ha realizado una revisión del estado del arte acerca de los criterios existentes para cuantificar el trauma craneoencefálico.Este es un aspecto clave para las simulaciones numéricas, ya que la idoneidad de algunos de estos criterios para la predicción de lesiones cerebrales todavía es un debate abierto. Mediante EF, [CA] Les càrregues d'impacte son la font primària de lesions al cap i poden resultar en un rang de severitat des de lleu a greu. Degut als múltiples entorns en que poden desencadenar-se lesions per impacte (accidents automobilístics, esports, caigudes accidentals, violència), aquestes poden afectar potencialment a tota la població independentment del seu estat de salut. Malgrat el creixent esforç en investigació per comprendre la biomecànica de les lesions per traumatisme al cap, encara no és del tot possible realitzar prediccions precises ni prevenir aquestos esdeveniments. En aquesta Tesi, s'han estudiat alguns aspectes del comportament a impacte dels diferents teixits biològics involucrats mitjançant el desenvolupament d'un model numèric de cap humà a partir d'imatges de tomografia computeritzada (TAC). S'han realitzat simulacions en elements finits (EF) d'assajos experimentals de la literatura amb la finalitat de validar el model numèric desenvolupat, establint unes propietats mecàniques adequades per a cadascun dels seus constituents. D'aquesta manera es pot aconseguir una predicció del risc de sofrir danys traumàtics. Part d'aquesta Tesi es centra en l'entorn balístic, específicament en cascs de combat antibales, els quals són susceptibles de causar traumatisme degut a l'elevada deformació que sofrixen durant l'impacte. Previament a l'estudi d'aquests fenòmens d'alta velocitat, s'han realitzat assajos experimentals i numèrics per a caracteritzar la resposta mecànica d'alguns materials compostos en condicions d'impacte a baixa velocitat. Al començament d'aquesta Tesi s'ha realitzat una revisió de l'estat de l'art sobre els criteris existents per quantificar el trauma cranioencefàlic. Aquest és un aspecte clau per a les simulacions numèriques, ja que l'utilitat d'alguns d'aquestos criteris per a la predicció de lesions cerebrals és encara un debat obert. Mitjançant EF s'han realitzat simulacions numèriques d'impactes balístics en un cap protegit amb un casc de c, [EN] Impact loading is the primary source of head injuries and can result in a range of trauma from mild to severe. Because of the multiple environments in which impact-related injuries can take place (automotive accidents, sports, accidental falls, violence), they can potentially affect the entire population regardless of their health conditions. Despite the increasing research effort on the understanding of head impact biomechanics, accurate prediction and prevention of traumatic injuries has not been completely achieved. In this Thesis, some aspects of the impact behaviour of the different biological tissues involved have been analysed through the development of a numerical human head model from Computed Tomography (CT) images. FE simulations of experimental tests from the literature have been performed and enhanced the validation of the head model through the establishment of proper material laws for its constituents, which enable adequate prediction of injury risks. Part of this Thesis focuses on the ballistic environment, especifically in bulletproof composite helmets, which are susceptible to cause blunt injuries to the head because of their large deformation during impact. Prior to the study of these high-speed impacts, experimental tests and finite element (FE) models have been performed to characterise the mechanical response of composite materials subjected to low velocity impact. The implementation of a continuum damage mechanics approach coupled to a Hashin failure criterion and surface-to-surface cohesive relations to the numerical model provided a good matching with the impact behaviour obtained experimentally, capturing the principal damage mechanisms. A review of the head injury criteria currently available in the literature has been performed at the beginning of this Thesis. This is a key issue for the numerical simulations, as the suitability of some criteria to predict head injuries is still an open question. Numerical simulation of ballistic imp