1. Larger Corner-Free Sets from Combinatorial Degenerations
- Author
-
Christandl, M., Fawzi, O., Ta, H., Zuiddam, J., Braverman, M., Algebra, Geometry & Mathematical Physics (KDV, FNWI), IT University of Copenhagen (ITU), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Traitement optimal de l'information avec des dispositifs quantiques (QINFO), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Grenoble Alpes (UGA)-Inria Lyon, Institut National de Recherche en Informatique et en Automatique (Inria), University of Amsterdam [Amsterdam] (UvA), ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010), European Project: 851716,ERC-2019-STG,AlgoQIP(2021), and Braverman, Mark
- Subjects
FOS: Computer and information sciences ,Theory of computation → Communication complexity ,Mathematics of computing ��� Discrete mathematics ,number on the forehead ,Mathematics of computing → Discrete mathematics ,Corner-free sets ,Computational Complexity (cs.CC) ,Computer Science::Computational Complexity ,combinatorial degeneration ,Theory of computation ��� Communication complexity ,05D10, 05C65 ,Computer Science - Computational Complexity ,hypergraphs ,Shannon capacity ,FOS: Mathematics ,Mathematics - Combinatorics ,communication complexity ,[INFO]Computer Science [cs] ,Combinatorics (math.CO) ,Theory of computation → Algebraic complexity theory ,eval problem ,Theory of computation ��� Algebraic complexity theory - Abstract
There is a large and important collection of Ramsey-type combinatorial problems, closely related to central problems in complexity theory, that can be formulated in terms of the asymptotic growth of the size of the maximum independent sets in powers of a fixed small (directed or undirected) hypergraph, also called the Shannon capacity. An important instance of this is the corner problem studied in the context of multiparty communication complexity in the Number On the Forehead (NOF) model. Versions of this problem and the NOF connection have seen much interest (and progress) in recent works of Linial, Pitassi and Shraibman (ITCS 2019) and Linial and Shraibman (CCC 2021). We introduce and study a general algebraic method for lower bounding the Shannon capacity of directed hypergraphs via combinatorial degenerations, a combinatorial kind of "approximation" of subgraphs that originates from the study of matrix multiplication in algebraic complexity theory (and which play an important role there) but which we use in a novel way. Using the combinatorial degeneration method, we make progress on the corner problem by explicitly constructing a corner-free subset in $F_2^n \times F_2^n$ of size $\Omega(3.39^n/poly(n))$, which improves the previous lower bound $\Omega(2.82^n)$ of Linial, Pitassi and Shraibman (ITCS 2019) and which gets us closer to the best upper bound $4^{n - o(n)}$. Our new construction of corner-free sets implies an improved NOF protocol for the Eval problem. In the Eval problem over a group $G$, three players need to determine whether their inputs $x_1, x_2, x_3 \in G$ sum to zero. We find that the NOF communication complexity of the Eval problem over $F_2^n$ is at most $0.24n + O(\log n)$, which improves the previous upper bound $0.5n + O(\log n)$., Comment: A short version of this paper will appear in the proceedings of ITCS 2022. This paper improves results that appeared in arxiv:2104.01130v1
- Published
- 2022