1. Phase-based Minimalist Parsing and complexity in non-local dependencies
- Author
-
Cristiano Chesi
- Subjects
FOS: Computer and information sciences ,traitement de texte ,Computer science ,tecnology ,linguaggio ,Computational Complexity (cs.CC) ,computer.software_genre ,digital humenities ,Reading (process) ,media_common ,Parsing ,Computer Science - Computation and Language ,06 humanities and the arts ,artificial intelligence ,elaborazione del linguaggio naturale ,Computational Linguistics ,linguistique computationelle ,0602 languages and literature ,Metric (mathematics) ,text processing ,umanistica digitale ,0305 other medical science ,intelligenza artificiale ,Computation and Language (cs.CL) ,Natural language processing ,technologie ,Computer Science - Artificial Intelligence ,media_common.quotation_subject ,Object (grammar) ,Verb ,traitement du langage naturel ,030507 speech-language pathology & audiology ,03 medical and health sciences ,intelligence artificielle ,Rule-based machine translation ,Encoding (memory) ,linguistica computazionale ,natural language processing ,060201 languages & linguistics ,language ,business.industry ,tecnologia ,langue ,Feature (linguistics) ,Computer Science - Computational Complexity ,Artificial Intelligence (cs.AI) ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,Artificial intelligence ,business ,computer ,elaborazione del testo - Abstract
A cognitively plausible parsing algorithm should perform like the human parser in critical contexts. Here I propose an adaptation of Earley’s parsing algorithm, suitable for Phase-based Minimalist Grammars (PMG, Chesi 2012), that is able to predict complexity effects in performance. Focusing on self-paced reading experiments of object clefts sentences (Warren & Gibson 2005) I will associate to parsing a complexity metric based on cued features to be retrieved at the verb segment (Feature Retrieval & Encoding Cost, FREC). FREC is crucially based on the usage of memory predicted by the discussed parsing algorithm and it correctly fits with the reading time revealed. Un algoritmo di parsing cognitivamente plausibile dovrebbe avere una performance paragonabile a quella umana in contesti critici. In questo lavoro propongo un adattamento dell’algoritmo di Earley che utilizza Grammatiche Minimaliste basate sul concetto di Fase (PMG, Chesi 2012). Associata all’algoritmo, verrà discussa una funzione di costo (Feature Retrieval & Encoding Cost, FREC) capace di misurare la difficoltà relativa al recupero dei referenti coinvolti in dipendenze a distanza. La funzione si basa sui tratti morfosintattici archiviati nel memory buffer utilizzato dal parser. Concentrandosi sulle strutture scisse ad estrazione dell’oggetto, si mostrerà come il FREC risulti predittivo dei dati sperimentali ricavati da studi classici di lettura autoregolata (Warren & Gibson 2005).
- Published
- 2019