1. Buffer gas cooled ice chemistry. II. Ice generation and mm-wave detection of molecules desorbed from an ice.
- Author
-
Hager, T. J., Moore, B. M., Borengasser, Q. D., Kanaherarachchi, A. C., Renshaw, K. T., Radhakrishnan, S., Hall, G. E., and Broderick, B. M.
- Subjects
- *
PROOF of concept , *PHOTONS , *DESORPTION , *SPECTROMETRY , *ELECTRONS - Abstract
This second paper in a series of two describes the chirped-pulse ice apparatus that permits the detection of buffer gas cooled molecules desorbed from an energetically processed ice using broadband mm-wave rotational spectroscopy. Here, we detail the lower ice stage developed to generate ices at 4 K, which can then undergo energetic processing via UV/VUV photons or high-energy electrons and which ultimately enter the gas phase via temperature-programmed desorption (TPD). Over the course of TPD, the lower ice stage is interfaced with a buffer gas cooling cell that allows for sensitive detection via chirped-pulse rotational spectroscopy in the 60–90 GHz regime. In addition to a detailed description of the ice component of this apparatus, we show proof-of-principle experiments demonstrating the detection of H2CO products formed through irradiation of neat methanol ices or 1:1 CO + CH4 mixed ices. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF