1. A key to improved ion core confinement in the JET tokamak : ion stiffness mitigation due to combined plasma rotation and low magnetic Shear
- Author
-
Mantica, P., Challis, C., Peeters, A.G., Strintzi, D., Tala, T., Tsalas, M., deVries, P.C., Baiocchi, B., Baruzzo, M., Bizarro, J., Buratti, P., Citrin, J., Colyer, G., Crisanti, F., Garbet, X., Giroud, C., Hawkes, N., Hobirk, J., Imbeaux, F., Joffrin, E., Johnson, T., Lerche, E., Mailloux, J., Naulin, Volker, Salmi, A., Sozzi, C., Staebler, G., Van Eester, D., Versloot, T., Weiland, J., and Science and Technology of Nuclear Fusion
- Subjects
Physics ,Tokamak ,General Physics and Astronomy ,Magnetic confinement fusion ,Stiffness ,Plasma ,Mechanics ,turbulent transport ,ion heat transport ,turbulence stabilisation ,Fusion power ,Fusionsenergiforskning ,law.invention ,Ion ,Nonlinear system ,Fusion energy ,Fusionsenergi ,Shear (geology) ,law ,Physics::Plasma Physics ,medicine ,Atomic physics ,medicine.symptom - Abstract
New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. Phys. Rev. Lett. 102 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation. © 2011 American Physical Society
- Published
- 2011
- Full Text
- View/download PDF