53 results on '"de Godoy MRC"'
Search Results
2. Effects of chicken slurry inclusion on apparent total tract macronutrient digestibility, palatability, and fecal characteristics, microbiota, and metabolites of healthy adult dogs.
- Author
-
Geary EL, Vogel CL, Oba PM, Mioto JC, de Godoy MRC, and Swanson KS
- Subjects
- Animals, Dogs, Male, Gastrointestinal Microbiome physiology, Female, Feces chemistry, Feces microbiology, Digestion physiology, Chickens physiology, Diet veterinary, Animal Feed analysis, Nutrients metabolism, Animal Nutritional Physiological Phenomena
- Abstract
"Premium" pet foods are often formulated with meat slurries. Meat slurries are believed to be of higher quality than rendered meals, but inadequate research has been performed to test how their inclusion affects palatability, digestibility, or indicators of gastrointestinal health. Therefore, the objectives of this study were to determine how chicken slurry inclusion affected the palatability and apparent total tract digestibility (ATTD) of dog foods and to assess their effects on the fecal characteristics, metabolites, and microbiota of dogs. A replicated 3 × 3 Latin square design digestibility study was conducted using 9 healthy adult dogs (age = 5.44 ± 0.53 yr) to test diets containing 0% (control; CON), 8% (low inclusion; LOW), and 16% (high inclusion; HIGH) chicken slurry. The experiment comprised three 21-d experimental periods (14 d of adaptation, 5 d of total fecal collection (used for ATTD calculations), and 2 d of blood collection). On the first day of fecal collections, one fresh sample was collected for measurement of pH, dry matter (DM) content, fermentative metabolite concentrations, and microbiota populations. A 2-d palatability study (n = 20 dogs) was also conducted to compare CON vs. HIGH. Data were analyzed statistically by Mixed Models using SAS 9.4, with P < 0.05 being significant. In the palatability study, dogs were shown to prefer (P < 0.05) the HIGH diet by a ratio of 2:1. In the digestibility study, fecal output, scores, pH, and DM percentage were not different among diets. The ATTD of protein was higher (P < 0.05) for the HIGH diet (84.6%) than for the LOW (82.7%) or CON (82.6%) diets. The ATTD of other nutrients and energy were not different among diets (all over 80%). Fecal propionate, butyrate, and total short-chain fatty acid concentrations were higher (P < 0.05) in dogs fed the LOW diet (122.0, 67.4, and 408.2 μmol/g, respectively) than those fed the HIGH diet (89.0, 46.9, and 338.2 μmol/g, respectively). The other fecal metabolites (acetate, branched-chain fatty acids, ammonia, phenol, and indole) were not different among treatments. Few changes to the fecal microbiota were noted. However, the relative abundance of fecal Fusobacterium was higher (P < 0.05) in dogs fed the CON diet than those fed the HIGH diet (25.7% vs. 20.0% relative abundance). In summary, chicken slurry inclusion improved palatability but had minimal effects on nutrient digestibility and fecal characteristics, metabolites, and microbiota., (© The Author(s) 2024. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
3. Effects of supplementation of live and heat-treated Bifidobacterium animalis subspecies lactis CECT 8145 on glycemic and insulinemic response, fecal microbiota, systemic biomarkers of inflammation, and white blood cell gene expression of adult dogs.
- Author
-
Kayser E, He F, Nixon S, Howard-Varona A, Lamelas A, Martinez-Blanch J, Chenoll E, Davenport GM, and de Godoy MRC
- Subjects
- Animals, Dogs, Male, Female, Dietary Supplements analysis, Animal Feed analysis, Biomarkers blood, Inflammation veterinary, Gastrointestinal Microbiome, Blood Glucose, Leukocytes metabolism, Hot Temperature, Insulin blood, Insulin metabolism, Gene Expression, Bifidobacterium animalis, Feces microbiology, Feces chemistry, Probiotics pharmacology, Probiotics administration & dosage, Diet veterinary
- Abstract
The popularity of functional ingredients such as probiotics and postbiotics has increased as pet owners seek ways to improve the health quality and longevity of their pets. Limited research has been conducted regarding the use of probiotics and postbiotics and their effects on canine health. The objective of this study was to evaluate the effects of daily supplementation of Bifidobacterium animalis subsp. lactis CECT 8145, in both live probiotic (PRO) and heat-treated postbiotic (POST) forms, on fecal fermentative end-products and microbiome, insulin sensitivity, serum gut hormones, oxidative stress, inflammatory biomarkers, and white blood cell gene expression of adult dogs. Eighteen adult beagles and 18 adult English pointers were used in a double-blinded placebo-controlled parallel group design, with 12 animals per group (6 English pointers and 6 beagles). The study began with a 60 d adaptation period followed by a 90 d period of daily supplementation with either PRO, POST, or placebo (maltodextrin; CON). Longitudinal assessment of body weight, body condition score, and pelvic circumference did not differ among dietary supplements (P > 0.05). Throughout the experimental period, fecal scores did not differ (P > 0.05); however, fecal pH was lower (P = 0.0049) in the dogs fed POST compared with CON. A higher fecal concentration of propionate (P = 0.043) was observed in dogs fed PRO and POST when compared with CON. While PRO and POST supplementation were associated with changes in bacterial composition at the family and genus level, the overall richness and diversity of the microbiome were not significantly affected. Functional analysis of the metagenome also suggests that PRO and POST supplementation induced potentially beneficial changes in the abundance of pathways involved in pathogenicity, amino acid biosynthesis, and DNA repair. No differences in glycemic or insulinemic responses were observed among the groups (P > 0.05). Dogs supplemented with PRO had a higher (P < 0.05) mean white blood cell leptin relative fold gene expression compared with groups POST and CON. Serum metabolites and complete blood cell counts were within normal ranges and all dogs remained healthy throughout the study. Together, these data suggest that the PRO and POST can safely be supplemented for dogs. Moreover, the results of this study support further investigation of the role of PRO and POST in supporting parameters related to gut health and hormonal regulation., (© The Author(s) 2024. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
4. The effects of hydrolyzed protein on macronutrient digestibility, fecal metabolites and microbiota, oxidative stress and inflammatory biomarkers, and skin and coat quality in adult dogs.
- Author
-
Hsu C, Marx F, Guldenpfennig R, Valizadegan N, and de Godoy MRC
- Subjects
- Dogs, Animals, Digestion, Feces microbiology, Nutrients metabolism, Diet veterinary, Chickens, Animal Feed analysis, Protein Hydrolysates pharmacology, Microbiota
- Abstract
Research on protein hydrolysates has observed various properties and functionalities on ingredients depending on the type of hydrolysate. The objective of this study was to evaluate the effects of hydrolyzed chicken protein that was incorporated into diets on digestibility, gut health, skin and coat health, oxidative stress, and intestinal inflammation markers in healthy adult dogs. Five complete and balanced diets were manufactured: (1) CONd: 25% chicken meal diet; (2) 5% CLHd: 5% chicken liver and heart hydrolysate plus 20% chicken meal diet; (3) CLHd: 25% chicken liver and heart hydrolysate diet; (4) 5% CHd: 5% chicken hydrolysate plus 20% chicken meal diet; (5) CHd: 25% chicken hydrolysate diet. A replicated 5 × 5 Latin square design was used which included 10 neutered adult Beagles. Each of the 5 periods consisted of a 7-d washout time and a 28-d treatment period. All diets were well accepted by the dogs. Fecal butyrate concentration was higher while fecal isovalerate and total phenol/indole were lower in dogs fed CLHd than CONd (P < 0.05). Dogs fed CHd had higher fecal immunoglobulin A concentration when compared with CLHd (P < 0.05); however, both groups were comparable to the CONd. There was no difference among groups in serum cytokine concentrations, serum oxidative stress biomarkers, or skin and coat health analyses (P > 0.05). Fecal microbiota was shifted by CLHd with higher abundance in Ruminococcus gauvreauii group as well as lower Clostridium sensu stricto 1, Sutterella, Fusobacterium, and Bacteroides when compared with CONd (P < 0.05). There was also a difference in beta diversity of fecal microbiota between CLHd and CHd (P < 0.05). In conclusion, chicken protein hydrolysate could be incorporated into canine extruded diets as a comparable source of protein to traditional chicken meal. The test chicken protein hydrolysates showed the potential to support gut health by modulating immune response and microbiota; however, functional properties of protein hydrolysates are dependent on inclusion level and source., (© The Author(s) 2024. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
5. Green banana flour as a novel functional ingredient in retorted feline diets.
- Author
-
Hsu C, White B, Lambrakis L, Oba PM, He F, Utterback P, Parsons CM, and de Godoy MRC
- Subjects
- Cats, Animals, Digestion, Animal Feed analysis, Diet veterinary, Feces chemistry, Animal Nutritional Physiological Phenomena, Flour, Musa
- Abstract
Green banana flour (GBF) is a novel ingredient that is high in resistant starch and could be a dietary fiber source in companion animal nutrition. In addition, with its light brown color and pectin content, GBF could potentially serve as a natural color additive and thickening agent in pet food manufacturing. The purpose of this research is to evaluate different sources of GBF, the effect of GBF on texture and color in canned foods, and its effect on apparent total tract digestibility (ATTD), fecal characteristics, and fecal fermentative end-products in healthy adult cats. Prior to the feline study, different sources of GBF were analyzed for chemical composition, manufacturing properties, true metabolizable energy, and fermentability. For the feline feeding trial, all treatment diets were formulated to meet or exceed the Association of American Feed Control Officials (Association of American Feed Control Officials (AAFCO) 2020. Official Publication. Champaign, IL.) guidelines for adult cat maintenance. There were five dietary treatments: rice control (4% rice flour), potato control (4% dehydrated potato flakes), 1% GBF (1% GBF and 3% rice flour), 2% GBF (2% GBF and 2% rice flour), and 4% GBF. All treatment diets were analyzed for texture and color. The animal study was conducted using a completely randomized design with 39 adult domestic cats. There was a 7-d diet adaptation period followed by a baseline fresh fecal collection to determine fecal score, pH, short-chain fatty acid, branched-chain fatty acid, phenol, indole, ammonia, and microbiota. The treatment period lasted for 21 d and a total fecal collection was performed during the last 4 d of this period to determine the ATTD. A fresh fecal sample was also collected during the total fecal collection to evaluate fecal score, pH, metabolites, and microbiota. The MIXED model procedures of SAS version 9.4 were used for statistical analysis. Treatment diets containing GBF had a lower hardness from the texture profile analysis (P < 0.05). For color analysis, the 4% GBF diet was darker in color compared with the rice diet (P < 0.05). There was no difference in food intake, fecal output, or ATTD of macronutrients among the treatment groups (P > 0.05). There was no interaction of treatment and time or main effects shown in fecal score, pH, metabolites, or microbiota diversity (P > 0.05). In conclusion, adding GBF to canned diets may affect the texture and color of the product, but GBF was comparable to traditional carbohydrate sources, rice, and potato, from a nutritional aspect., (© The Author(s) 2024. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
6. Functional properties of Ganoderma lucidum supplementation in canine nutrition.
- Author
-
Kayser E, Castaneda PL, Soto-Diaz K, Steelman AJ, Murphy A, Spindola M, He F, and de Godoy MRC
- Subjects
- Dogs, Animals, Digestion, Leukocytes, Mononuclear, Feces, Diet veterinary, Dietary Supplements, Animal Feed analysis, Reishi, Vaccines
- Abstract
Ganoderma lucidum (GL) is a mushroom that has been widely used in Asia for its immunostimulatory and anti-inflammatory capacity, which has been hypothesized to be attributed mainly to the recognition of its cell-surface patterns by cells of the immune system present in the gastrointestinal tract, resulting in a cascade of modulatory events. However, the nutraceutical properties of GL have not been tested in dogs. Forty adult beagles were used in a completely randomized design. The objective of the present study was to evaluate the effects of dietary inclusion of GL on peripheral blood mononuclear cells (PBMC; T cells, B cells, monocytes, and natural killers), vaccine response, nutrient digestibility, fecal fermentative end-products, and skin and coat quality of adult dogs. Dogs were fed a commercial dry extruded complete and balanced diet plus GL top-dressed daily upon feeding time. Four experimental treatments were used: 0% GL supplementation (control), 5 mg/kg BW of GL, 10 mg/kg BW of GL, or 15 mg/kg BW of GL. Following a 7 d adaptation to the control diet, dogs were fed their respective treatment diets for 28 d. They were challenged with vaccination of a modified live virus Canine Distemper, Adenovirus Type 1 (Hepatitis), Adenovirus Type 2, Parainfluenza, and Parvovirus and killed Rabies Virus on day 7 with blood collections on days 0, 14, and 28. The inclusion of GL in all dosages was well-accepted by all dogs, with no detrimental effect on macronutrient apparent total tract digestibility. There was a trend that the percentage of major histocompatibility II (MHC-II) from B cells was greater in dogs fed 15 mg/kg of GL (41.91%) compared to the control group (34.63%). The phagocytosis response tended to have treatment-by-time interaction among treatments; dogs fed 15 mg/kg of GL tended to have greater phagocytosis activity on day 28 than dogs from the control group and dogs fed 5 mg/kg of GL. The vaccine-specific serum immunoglobulin G (IgG) concentrations were higher in the group supplemented with 15 mg/kg of GL compared to treatment control 7 d after the vaccination for rabies. These data suggest that the inclusion of GL had no detrimental effects on any analyzed PBMC. Due to changes in immune parameters among treatments, GL may also exert beneficial immunostimulatory effects in healthy adult dogs when provided at a daily dose of 15 mg/ kg BW., (© The Author(s) 2024. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
7. Standardized amino acid digestibility and protein quality in extruded canine diets containing hydrolyzed protein using a precision-fed rooster assay.
- Author
-
Hsu C, Utterback PL, Parsons CM, Marx F, Guldenpfennig R, and de Godoy MRC
- Subjects
- Dogs, Animals, Male, Chickens, Diet veterinary, Methionine, Phenylalanine, Racemethionine, Protein Hydrolysates, Amino Acids
- Abstract
Protein hydrolysate has become a choice of alternative protein source in canine diets as it showed greater digestibility, lower allergenic responses, and various functional properties when compared with intact proteins. The objective of the study was to determine the effect of hydrolyzed protein inclusion on amino acid digestibility and protein quality in extruded canine diets when compared with a traditional protein source for adult dogs. Five treatment diets were formulated to have similar compositions except for the main protein source. The control diet was formulated with chicken meal (CM) as the primary protein source. Test hydrolyzed proteins, chicken liver and heart hydrolysate (CLH) and chicken hydrolysate (CH) were used to partially or completely substitute CM. The diets were: CONd: CM (30%) diet; 5%CLHd: 5% CLH with 25% CM diet; CLHd: CLH (30%) diet; 5%CHd: 5% CH with 25% CM diet; CHd: CH (30%) diet. A precision-fed rooster assay was used to determine standardized amino acid digestibility for the ingredients and diets. In addition, Digestible Indispensable Amino Acid Score (DIAAS)-like values were calculated for the protein ingredients. All protein ingredients had higher than 80% of digestibility for all indispensable amino acids with no difference among sources (P > 0.05). From the DIAAS-like values referencing AAFCO nutrient profile for adult dogs, CLH and CH did not have any limiting amino acid; on the other hand, CM has a lower DIAAS-like value (93.3%) than CLH and CH (P < 0.05) with tryptophan being the first-limiting amino acid. The DIAAS-like values were often lower when the amino acid combinations methionine + cysteine and phenylalanine + tyrosine were included in the calculation. When referencing NRC recommended allowances and minimal requirements, methionine was the first-limiting amino acid for all protein sources. Amino acid digestibility was mostly above 80% and comparable among the treatment diets. Regarding the digestible indispensable amino acid concentrations in the diets, all of them met the AAFCO nutrient profile for adult dogs at maintenance. In conclusion, both protein hydrolysates were highly digestible, high-quality protein sources, and a full substitution from CM to protein hydrolysate could result in greater protein quality, according to the DIAAS-like values of the ingredients, when compared with CM in extruded canine diets., (© The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
8. The impact of protein source and grain inclusion on digestibility, fecal metabolites, and fecal microbiome in adult canines.
- Author
-
Clark SD, Hsu C, McCauley SR, de Godoy MRC, He F, Streeter RM, Taylor EG, and Quest BW
- Subjects
- Animals, Dogs, Ammonia analysis, Animal Feed analysis, Diet veterinary, Diet, Protein-Restricted veterinary, Fatty Acids, Volatile analysis, Feces chemistry, Plant Breeding, Digestion, Microbiota
- Abstract
This study was conducted to determine the effect of animal protein inclusion rate and grain-free or grain-inclusive diets on macronutrient digestibility, fecal characteristics, metabolites, and microbiota in mixed-breed hounds and Beagles. Four experimental extruded kibble diets were made with varying amounts of animal protein and carbohydrates: 1) high animal protein, grain-inclusive (HA-GI), 2) low animal protein, grain-free (LA-GF), 3) low animal protein, grain-inclusive (LA-GI), and 4) high animal protein, grain-free (HA-GF). Thirty-two Beagles and 33 mixed-breed hounds were assigned to 1 of the 4 treatment groups in a completely randomized design that lasted 180 d. All diets were similar in chemical composition and well-digested by the animals. In general, for fecal metabolites, mixed-breed hounds had a greater concentration of total short-chain fatty acid (SCFA) and ammonia and lower indole concentration than Beagles (P < 0.05). In mixed-breed hounds, LA-GF had a greater (P < 0.05) total SCFA concentration than HA-GI and LA-GI; however, this was not observed in Beagles. There were greater concentrations of ammonia, phenol, and indole in HA-GI than in LA-GF (P < 0.05). Breed-affected fecal primary bile acid (BA) concentration, as mixed-breed hounds had a greater concentration of cholic acid (CA) than Beagles (P < 0.05). Mixed-breed hounds fed LA-GF resulted in greater CA concentrations than HA-GI and LA-GI (P < 0.05). Dogs who consumed LA-GF had lower fecal secondary BA content than the other groups (P < 0.05). The distribution of the fecal microbiota community differed in LA-GF compared with the other groups, with lower α-diversity. However, dogs fed LA-GF had the largest difference in composition with greater Selenomonadaceae, Veillonellaceae, Lactobacillaceae, Streptococcus, Ligilactobacillus, Megamonas, Collinsella aerofaciens, and Bifidobacterium sp. than the other groups. A significant breed effect was noted on nutrient digestibility, fecal metabolites, and microbiota. A treatment effect was observed in LA-GF as it resulted in greater fecal SCFA, lower protein fermentative end products, greater fecal primary BAs, lower fecal secondary BA concentrations, and shifts in fecal microbiota., (© The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science.)
- Published
- 2023
- Full Text
- View/download PDF
9. Nutrient profile, amino acid digestibility, true metabolizable energy, and indispensable amino acid scoring of whole hemp seeds for use in canine and feline diets.
- Author
-
Finet S, He F, Utterback PL, Parsons CM, and de Godoy MRC
- Subjects
- Cats, Animals, Dogs, Male, Humans, Amino Acids metabolism, Chickens metabolism, Tryptophan metabolism, Digestion, Diet veterinary, Nutrients metabolism, Proteins metabolism, Dietary Fiber metabolism, Fatty Acids metabolism, Animal Feed analysis, Seeds chemistry, Cat Diseases, Cannabis chemistry, Cannabis metabolism, Dog Diseases
- Abstract
The use of various hemp-derived products has been rapidly growing in the human nutrition industry and has sparked great interest in using these ingredients for companion animals as well. Thorough research is needed to determine the ingredient and safety standards required for AAFCO approval of hemp ingredients. In order to be effectively incorporated into pet food products, we must determine the nutrient content, quality, and utility of these ingredients in pet species. The objective of this study was to evaluate the nutrient composition of seeds from four different varieties of hemp, NWG 452, NWG 331, NWG 2730, X-59, and determine protein quality and true metabolizable energy using a cecectomized rooster model. The seeds were similar in macronutrient composition, with small variations in acid hydrolyzed fat, crude protein, total dietary fiber and gross energy content, as well as amino acid and long-chain fatty acid profiles. All essential amino acids were present in concentrations that exceeded the NRC (2006) recommended allowances for adult dogs and cats at maintenance with the exception of tryptophan. The long-chain fatty acid profile presented a favorable ratio of omega-6 to omega-3 fatty acids of close to 3.5:1. The results of the cecectomized rooster assay indicated no significant difference in the standardized amino acid digestibility of the indispensable amino acids among the seed varieties (P > 0.05). A significant difference in the true metabolizable energy corrected for nitrogen was observed among the seeds (P < 0.05), following the pattern of higher acid hydrolyzed fat and lower total dietary fiber content resulting in higher metabolizable energy. An adapted calculation of digestible indispensable amino acid score was made to determine protein quality of the hemp seeds using AAFCO nutrient profiles and NRC recommended allowances for adult dogs and cats at maintenance as reference points. The resulting scores determined tryptophan to be the first limiting amino acid and indicate that hemp seeds alone do not meet all the amino acid requirements for adult dogs and cats at maintenance, and would need a complimentary protein source for practical use in companion animal diets. The data from this study suggest that hemp seeds may provide a beneficial source of fat, protein, and dietary fiber, with consideration to differences in nutrient profile among seed varieties. However, further investigation in vivo is needed to determine the safety and efficacy of utilizing hemp in the diets of both canines and felines., (© The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
10. Functional properties of miscanthus fiber and prebiotic blends in extruded canine diets.
- Author
-
Finet S, He F, Clark LV, and de Godoy MRC
- Subjects
- Animal Feed analysis, Animals, Cellulose metabolism, Diet veterinary, Dietary Fiber metabolism, Digestion, Dogs, Feces chemistry, Female, Poaceae metabolism, Beta vulgaris metabolism, Prebiotics
- Abstract
Dietary fiber has become increasingly recognized as a key factor in maintaining gastrointestinal health. Dietary fiber sources are often comprised of several different fiber fractions, each with unique physicochemical properties. These properties can have varying physiological effects on the gastrointestinal tract that include modulation of microbiota, production of fermentation-derived metabolites, and laxation. The objectives of this study were 1) to determine the effects of a novel dietary fiber source, miscanthus grass fiber (MF), and prebiotic and fiber blends on gastrointestinal tolerance, apparent total tract digestibility, fecal metabolites, and fecal microbiota and 2) to evaluate the palatability of extruded diets containing MF in comparison to traditional dietary fiber sources. All animal procedures were approved by the University of Illinois Institutional Animal Care and Use Committee. Six dietary treatments were formulated to meet or exceed the AAFCO nutrient profile of 2018 and included either cellulose (CO), beet pulp (BP), MF, or a blend of MF and tomato pomace, MF and resistant starch, or MF and fructooligosaccharide. A total of 12 adult neutered female beagles (mean age 5.8 ± 1.1 yr; mean body weight 10.9 ± 1.0 kg; mean body condition score 5.7 ± 0.7) were randomly assigned to one of the six treatment diets in a replicated 6 × 6 Latin square design. Each dog was fed their assigned diet for a treatment period of 21 d with 17 d of diet adaptation followed by 4 d of total and fresh fecal collection. All diets were well accepted and digested by the dogs. Dogs fed BP had greater fecal total short-chain fatty acid concentration than the CO treatment (P < 0.05), while the dogs fed diets containing MF were intermediate. In a two-bowl palatability trial, no significant preference was observed between the extruded diets containing MF and CO (P > 0.05). However, a significant preference for the extruded diet containing BP over the diet containing only MF was observed (P < 0.05). The α-diversity of fecal microbial communities was not impacted by treatment (P > 0.05), but β-diversity indicated that dogs fed the BP diet differed from the other treatment groups (P < 0.05). The data from this study suggest that miscanthus grass can be successfully utilized in fiber blends in extruded diets for adult dogs, with modulatory effects similar to the traditional dietary fiber source, cellulose., (© The Author(s) 2022. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
11. Palatability and apparent total tract macronutrient digestibility of retorted black soldier fly larvae-containing diets and their effects on the fecal characteristics of cats consuming them.
- Author
-
Do S, Koutsos EA, McComb A, Phungviwatnikul T, de Godoy MRC, and Swanson KS
- Subjects
- Animal Feed analysis, Animal Nutritional Physiological Phenomena, Animals, Cats, Diet veterinary, Feces, Female, Larva, Male, Nutrients metabolism, Digestion, Diptera
- Abstract
There is a growing interest in using black soldier fly larvae (BSFL) due to its supposed sustainability and nutritional qualities. Because little research has been conducted to evaluate the use of BSFL in cats, our objective was to determine the palatability and apparent total tract macronutrient digestibility (ATTD) of BSFL-containing canned diets and the fecal characteristics of healthy adult cats consuming them. First, three palatability tests were conducted to compare the following diets: 1) diet with poultry byproduct meal (PBPM) and chicken serving as the primary protein sources (control) vs. diet with BSFL meal replacing PBPM (BSFL meal); 2) control vs. diet with whole BSFL replacing some PBPM and poultry fat (BSFL whole); and 3) control vs. diet with BSFL oil replacing poultry fat (BSFL oil). All diets were formulated to meet Association of American Feed Control Officials nutrient profiles for adult cats and were produced using a still retort. A paired t-test was conducted to analyze data from each palatability test, with a higher (P < 0.05) consumption ratio being observed for BSFL meal (1.93:1), BSFL whole (2.03:1), and BSFL oil (1.57:1). Second, 32 adult cats (20 females and 12 males; BW: 4.19 ± 0.55 kg; age: 3.3 ± 0.38 yr) were used in a completely randomized design study composed of a 21-d baseline period and a 70-d experimental period. Cats consumed the control diet during the baseline and were then allotted to one of four experimental diets (n = 8 per group): 1) control, 2) BSFL meal, 3) whole BSFL, and 4) BSFL oil. Fecal samples were collected after baseline and experimental periods for ATTD and fecal characteristic analysis. Fecal output was higher (P < 0.05) and fecal dry matter percentage was lower (P < 0.05) in cats fed BSFL meal than those fed BSFL oil. Organic matter, crude protein (CP), and energy ATTD were lower (P < 0.05) in cats fed BSFL meal than those fed BSFL oil or control. CP and energy ATTD were lower (P < 0.05) in cats fed BSFL whole than those fed BSFL oil. A few serum metabolites were affected by diet (P < 0.05) but remained within reference ranges. Hematology was not affected by diet (P > 0.05). Overall, our results suggest that BSFL-containing diets are palatable and do not negatively affect fecal characteristics or serum chemistry but may have slightly lower nutrient digestibilities in adult cats., (© The Author(s) 2022. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
12. Effects of a high-protein, high-fiber diet rich in antioxidants and l-carnitine on body weight, body composition, metabolic status, and physical activity levels of cats after spay surgery.
- Author
-
Iwazaki E, Lee AH, Kruis AM, Phungviwatnikul T, Valentine H, Arend LS, Knox RV, de Godoy MRC, and Swanson KS
- Subjects
- Animal Feed analysis, Animals, Body Composition, Body Weight, Carnitine, Cats, Diet veterinary, Female, Antioxidants, Physical Conditioning, Animal
- Abstract
Spay and neuter surgeries are useful in controlling pet populations, but increase obesity risk due to increased appetite, decreased metabolic rate, and decreased energy expenditure. Dietary management may help limit post-spay weight gain, but few research studies have been conducted in cats. Therefore, the objective of this study was to evaluate the effects of a high-protein, high-fiber diet (HPHF) compared to a moderate-protein, moderate-fiber diet (MPMF) in female cats following spay surgery. Twenty healthy female cats (9.5 ± 0.1 mo) were used. After a 4-wk baseline phase with cats fed MPMF to maintain body weight (BW), 16 cats were spayed and allotted to MPMF (n = 8) or HPHF (n = 8), with the remaining cats being sham-operated and fed MPMF (n = 4). Cats were fed to maintain BW for 12 wk and then allowed to eat up to twice that amount for another 12 wk. Daily food intake, twice weekly BW, and twice weekly body condition scores (BCS) were assessed. Back fat thickness (BF) using ultrasound, body composition using dual-energy X-ray absorptiometry (DEXA), feline body mass index (fBMI), body fat percentage estimates using zoometry measurements, serum metabolites, and voluntary physical activity levels were measured prior to spay (week 0) and every 6 wk post-spay. A treatment*time effect was observed for food intake (g/d), but not caloric intake (kcal ME/d). Caloric intake was affected by time and treatment, being reduced over the first 12 wk and reduced at higher amounts in HPHF and MPMF cats vs. sham cats. BW, BCS, and body fat percentage were affected over time. Treatment*time effects were observed for blood urea nitrogen, alkaline phosphatase, and fructosamine, whereas blood triglycerides, total cholesterol, creatinine, total protein, phosphorus, and bicarbonate were affected by time. Physical activity was reduced over time. Our results demonstrate that spay surgery affects food intake, BW, metabolism, and physical activity of cats. Dietary intervention in this study, however, led to minor changes., (© The Author(s) 2022. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
13. Nutritional and physico-chemical implications of avocado meal as a novel dietary fiber source in an extruded canine diet.
- Author
-
Dainton AN, He F, Bingham TW, Sarlah D, Detweiler KB, Mangian HJ, and de Godoy MRC
- Subjects
- Animal Feed analysis, Animal Nutritional Physiological Phenomena, Animals, Diet veterinary, Dietary Fiber, Dogs, Feces, Female, Gastrointestinal Tract, Digestion, Persea
- Abstract
This study assessed the effects of a diet containing avocado meal (AMD), an underutilized by-product avocado oil processing, on apparent total tract digestibility (ATTD) and fecal fermentative end-products when compared with beet pulp (BPD) and cellulose (CD) diets targeting 15% total dietary fiber (TDF). The concentration of persin, a natural fungicidal toxin present in avocado, was also determined on several parts of the fruit and avocado meal. Nine intact female beagles (4.9 ± 0.6 yr and 11.98 ± 1.76 kg) were randomly grouped in a 3 × 3 replicated Latin square design. Periods were 14 d long, with 10 d of adaptation followed by 4 d of total fecal and urine collection for apparent total tract digestibility (ATTD) calculations. Fresh fecals were analyzed for fermentative end-products. The BPD (87.0 g/d) caused higher (P < 0.05) fecal output (as-is basis) than AMD (62.3 g/d) and CD (58.0 g/d). Fecal score for the BPD (3.1) was greater (P < 0.05) than for AMD (2.8) or CD (2.6). Acid-hydrolyzed fat ATTD was lower (P < 0.05) for the BPD (94.1%) than for the AMD (95.5%) and CD (95.7%). Crude protein ATTD was greater (P < 0.05) for the CD (88.5%) than the AMD (82.2%) or BPD (83.7%). Dogs fed AMD (49.9%) or BPD (51.0%) exhibited greater (P < 0.05) TDF ATTD than CD. The fermentative profile for the AMD (233.4, 70.9, 8.8, and 12.0 μmole/g DM, respectively) was similar (P > 0.05) to the CD (132.9, 61.7, 7.5, and 9.5 μmole/g DM, respectively) profile, with lower (P < 0.05) concentrations of acetate and propionate and higher (P < 0.05) concentrations of isovalerate and indoles compared to the BPD. Dogs fed AMD (47.0 μmole/g DM) or BPD (54.2 μmole/g DM) exhibited similar (P > 0.05) fecal butyrate concentrations greater (P < 0.05) than for CD (24.7 μmole/g DM). Given these results, avocado meal appears to be an adequate dietary fiber source when compared with traditional fiber sources used in canine diets. No health adverse effects were observed in dogs fed extruded diet containing as much as 18% of avocado meal (as-is basis)., (© The Author(s) 2022. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
14. Chemical composition of selected insect meals and their effect on apparent total tract digestibility, fecal metabolites, and microbiota of adult cats fed insect-based retorted diets.
- Author
-
Reilly LM, Hu Y, von Schaumburg PC, de Oliveira MRD, He F, Rodriguez-Zas SL, Southey BR, Parsons CM, Utterback P, Lambrakis L, da Costa DV, Bertechini AG, Saad FMOB, and de Godoy MRC
- Subjects
- Animal Feed analysis, Animal Nutritional Physiological Phenomena, Animals, Cats, Chickens, Diet veterinary, Feces chemistry, Insecta, Male, Meals, Digestion, Microbiota
- Abstract
Insect meals are novel and potentially sustainable protein sources. The objectives of this study were to determine the chemical composition and standardized amino acid digestibility using the cecectomized rooster model of three selected insect meals (i.e., speckled cockroach [SC], Madagascar hissing cockroach [MC], and superworm [SW]) and to determine the effects of these insect meals on food intake, apparent total tract digestibility (ATTD) of macronutrients, fecal scores, and metabolites of adult cats fed insect- or chicken-based retorted diets. This study consisted of a complete randomized design, with 28 adult cats randomly assigned to one of the four experimental retorted diets: Control (chicken-based diet), SC diet, MC diet, or SW diet. All animal procedures were approved by the University of Illinois Institutional Animal Care and Use Committee. All diets were formulated to be complete and balanced and meet or exceed the nutritional requirements of adult cats. The experimental period was 28 d, with the first 7 d allotted for diet adaptation. The total fecal collection was completed during the last 4 d of the experimental period. On day 21, a fresh fecal sample from each cat was collected for the determination of fecal metabolites and microbiota. Food was offered twice daily to maintain body weight and body condition score. Among the three selected insect meals evaluated, oleic acid, palmitic acid, linoleic acid, and stearic acid were the most prevalent fatty acids. Branched-chain amino acids and arginine were the most preponderant indispensable amino acids in these insect meals. ATTD of dry matter, organic matter, acid-hydrolyzed fat, and crude protein did not differ among treatments (P > 0.05), and all diets were well digested by the cats. Similarly, fecal scores did not differ among the treatments and were within ideal range. No differences (P > 0.05) in fecal metabolite concentrations or microbiota diversity were observed among cats fed different experimental diets; only a few genera from Firmicutes and Bacteroidota phyla differ (P < 0.05) in cats fed SW diet in contrast to other dietary treatments. In conclusion, the selected insect meals evaluated herein are rich in linoleic acid, an essential fatty acid for cats. Insect-based retorted diets led to comparable results to those achieved with a chicken-based retorted diet, suggesting that these novel protein sources might be adequate alternative ingredients in feline diets., (© The Author(s) 2022. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
15. Effects of graded inclusion levels of raw garbanzo beans on apparent total tract digestibility, fecal quality, and fecal fermentative end-products and microbiota in extruded feline diets.
- Author
-
Reilly LM, He F, Rodriguez-Zas SL, Southey BR, Hoke JM, Davenport GM, and de Godoy MRC
- Subjects
- Animal Feed analysis, Animal Nutritional Physiological Phenomena, Animals, Cats, Diet veterinary, Digestion, Feces, Male, Cicer, Microbiota
- Abstract
Garbanzo beans (GB; Cicer arietinum) are a readily available pulse crop that have gained popularity as a plant-based protein source in the pet food industry. However, raw GB contain anti-nutritional factors that can reduce digestibility and cause digestive upsets in pets that are undesirable to owners. The objective of this study was to determine the effects of the inclusion of raw or cooked GB in extruded feline diets on macronutrient digestibility, gastrointestinal tolerance, and fermentative end-products in cats. Five diets were formulated to contain raw GB at 0%, 7.5%, 15%, or 30% or cooked GB at 30%. Ten adult, male cats (mean age: 1.0 ± 0.0 yr, mean BW: 4.7 ± 0.4 kg) were used in a replicated 5 × 5 Latin square design. Each period consisted of 14 d, with 10 d of diet adaptation followed by 4 d of total fecal and urine collection. At the end of each period, 4 mL of blood were collected and analyzed for a serum chemistry and complete blood count to ensure all animals remained healthy throughout the study. Cats were fed twice daily and food intake was calculated to maintain body weight. Food intake was highest (P < 0.05) for cats fed 0% raw GB (72.2 g/d, dry matter basis [DMB]) compared with GB inclusions of 7.5% or greater (average 70.3 g/d, DMB). Dry matter and organic matter apparent total tract digestibility (ATTD) were lowest (P < 0.05) for cats consuming the 30% cooked GB diet (77.3% and 81.7%, respectively). Cats fed 7.5% raw GB had greater (P < 0.05) crude protein ATTD (86.2%) than cats fed 15% raw GB (82.3%) or 30% cooked GB (81.6%). Total short-chain fatty acid concentrations were highest (P < 0.05) for 30% cooked GB at 682 μmol/g but not different (P > 0.05) than 15% GB (528 μmol/g) or 30% raw GB (591 μmol/g) diets. In terms of fecal microbial abundance, the predominant phyla were Firmicutes, Bacteroidota, and Actinobacteria. Cats fed the 0% GB diet had a greater relative abundance of Firmicutes (62.1%) and Fusobacteria (4.0%) than the remaining diets (average 54% and 1.6%, respectively). In conclusion, all inclusion levels of raw GB resulted in high digestibility (average > 80%) and ideal fecal scores (average 2.9), demonstrating their adequacy as a protein source in feline diets up to a 30% inclusion level., (© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
16. Longitudinal assessment of taurine and amino acid concentrations in dogs fed a green lentil diet.
- Author
-
Reilly LM, He F, Clark L, and de Godoy MRC
- Subjects
- Amino Acids, Animal Feed analysis, Animals, Diet veterinary, Dogs, Female, Lens Plant, Taurine
- Abstract
A recent association between the inclusion of pulses in canine diets and taurine deficiency has become a prevalent issue in the pet food industry. Although dogs do not currently have a nutritional requirement for taurine, taurine deficiencies that do occur can result in serious health issues, such as dilated cardiomyopathy. The objective of this study was to determine the circulating concentrations of plasma and whole blood taurine, indispensable and dispensable amino acid concentrations in the plasma, and taurine and creatinine concentrations in the urine of adult dogs fed a green lentil diet. Twelve adult, intact, female beagles were randomly assigned to a diet containing 45% green lentils (GLD) or a poultry byproduct meal diet (CON) for 90 d. Fresh urine samples were collected every 30 d and analyzed for taurine and creatinine concentrations. A blood sample was also collected every 30 d and analyzed for amino acids including taurine. Animal procedures were approved by the University of Illinois Institutional Animal Care and Use Committee. All diets were formulated to meet or exceed the nutrient requirements for adult dogs at maintenance. The concentrations of taurine in the plasma and whole blood showed no differences (P > 0.05) between dietary treatments or across time points. Similarly, no differences (P > 0.05) in plasma methionine concentrations were observed between treatments or across time points. A treatment effect (P < 0.05) showed dogs fed GLD had higher total primary fecal bile acid excretion compared with dogs fed CON. The differential abundance of fecal microbial communities showed Firmicutes as the predominant phyla in dogs fed both GLD and CON, with Bacteroidaceae, Erysipelotrichaceae, and Lactobacillaceae as predominant families in dogs fed GLD. The α-diversity of dogs fed GLD (P < 0.05) was lower than in dogs fed CON. These data suggest that the inclusion of 45% green lentil in extruded diets does not lower whole blood and plasma taurine concentrations during a 90-d period and is appropriate for use in a complete and balanced formulation for dogs., (© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
17. Effect of crude fiber and total dietary fiber on the calculated nitrogen-free extract and metabolizable energy content of various dog foods fed to client-owned dogs with osteoarthritis.
- Author
-
Traughber ZT, Detweiler KB, Price AK, Knap KE, Harper TA, Swanson KS, and de Godoy MRC
- Subjects
- Animal Feed analysis, Animals, Dietary Fiber, Dogs, Nitrogen, Nutrients, Dog Diseases, Osteoarthritis veterinary
- Abstract
Objective: To compare measurements of crude fiber (CF) and total dietary fiber (TDF) for various dog foods and their effect on the calculated nitrogen-free extract and metabolizable energy (ME) content, and to compare label-guaranteed and laboratory-analyzed macronutrient values., Samples: 51 dog foods fed to client-owned dogs with osteoarthritis., Procedures: Foods were analyzed for dry matter, ash, crude protein, acid-hydrolyzed fat, CF, and TDF. Metabolizable energy was calculated by use of a formula with modified Atwater factors and formulas recommended by the National Research Council that included both CF and TDF values. Linear regression analysis was performed to determine the correlation between CF and TDF values., Results: Only a few foods failed to conform to the guaranteed analysis for all macronutrients except for CF, in which approximately 40% of the foods exceeded the guaranteed maximum values. The CF and TDF values were moderately correlated ( r = 0.843). Correlations among CF- and TDF-based ME estimations were moderate with use of the modified Atwater formula and strong with use of the National Research Council formulas ( r = 0.86 and r = 0.91, respectively)., Conclusions and Clinical Relevance: Values for CF were the most variable of the macronutrients of the evaluated dog foods and results suggested that CF is an incomplete and inaccurate measurement of dietary fiber content and, thus, its inaccuracy may lead to inaccurate and variable ME values.
- Published
- 2021
- Full Text
- View/download PDF
18. Subacute Exposure to an Environmentally Relevant Dose of Di-(2-ethylhexyl) Phthalate during Gestation Alters the Cecal Microbiome, but Not Pregnancy Outcomes in Mice.
- Author
-
Chiu K, Bashir ST, Gao L, Gutierrez J, de Godoy MRC, Drnevich J, Fields CJ, Cann I, Flaws JA, and Nowak RA
- Abstract
Di-2-ethylhexyl phthalate (DEHP) is a plasticizer commonly found in polyvinyl chloride, medical equipment, and food packaging. DEHP has been shown to target the reproductive system and alter the gut microbiome in humans and experimental animals. However, very little is known about the impact of DEHP-induced microbiome changes and its effects during pregnancy. Thus, the objective of this study was to investigate the effects of DEHP exposure during pregnancy on the cecal microbiome and pregnancy outcomes. Specifically, this study tested the hypothesis that subacute exposure to DEHP during pregnancy alters the cecal microbiome in pregnant mice, leading to changes in birth outcomes. To test this hypothesis, pregnant dams were orally exposed to corn oil vehicle or 20 µg/kg/day DEHP for 10 days and euthanized 21 days after their last dose. Cecal contents were collected for 16S Illumina and shotgun metagenomic sequencing. Fertility studies were also conducted to examine whether DEHP exposure impacted birth outcomes. Subacute exposure to environmentally relevant doses of DEHP in pregnant dams significantly increased alpha diversity and significantly altered beta diversity. Furthermore, DEHP exposure during pregnancy significantly increased the relative abundance of Bacteroidetes and decreased the relative abundance of Firmicutes and Deferribacteres compared with controls. The affected taxonomic families included Deferribacteraceae , Lachnospiraceae , and Mucisprillum . In addition to changes in the gut microbiota, DEHP exposure significantly altered 14 functional pathways compared with the control. Finally, DEHP exposure did not significantly impact the fertility and birth outcomes compared with the control. Collectively, these data indicate that DEHP exposure during pregnancy shifts the cecal microbiome, but the shifts do not impact fertility and birth outcomes.
- Published
- 2021
- Full Text
- View/download PDF
19. Effects of dietary macronutrient profile on apparent total tract macronutrient digestibility and fecal microbiota, fermentative metabolites, and bile acids of female dogs after spay surgery.
- Author
-
Phungviwatnikul T, Alexander C, Do S, He F, Suchodolski JS, de Godoy MRC, and Swanson KS
- Subjects
- Animal Feed analysis, Animals, Bile Acids and Salts, Diet veterinary, Dietary Fiber, Dogs, Feces, Female, Nutrients, Digestion, Microbiota
- Abstract
Obesity and estrogen reduction are known to affect the gut microbiota and gut microbial-derived metabolites in some species, but limited information is available in dogs. The aim of this study was to determine the effects of dietary macronutrient profile on apparent total tract macronutrient digestibility, fecal microbiota, and fecal metabolites of adult female dogs after spay surgery. Twenty-eight adult intact female beagles (age: 3.02 ± 0.71 yr, BW: 10.28 ± 0.77 kg; BCS: 4.98 ± 0.57) were used. After a 5-wk baseline phase (week 0), 24 dogs were spayed and randomly allotted to one of three experimental diets (n = 8 per group): 1) control (CO) containing moderate protein and fiber (COSP), 2) high-protein, high-fiber (HPHF), or 3) high-protein, high-fiber plus omega-3 and medium-chain fatty acids (HPHFO). Four dogs were sham-operated and fed CO (COSH). All dogs were fed to maintain BW for 12 wk after spay and then allowed to consume twice that amount for 12 wk. Fecal samples were collected at weeks 0, 12, and 24 for digestibility, microbiota, and metabolite analysis. All data were analyzed using repeated measures and linear mixed models procedure of SAS 9.4, with results reported as a change from baseline. Apparent organic matter and energy digestibilities had greater decreases in HPHF and HPHFO than COSH and COSP. Increases in fecal acetate, total short-chain fatty acids, and secondary bile acids were greater and decreases in primary bile acids were greater in HPHF and HPHFO. Principal coordinates analysis of weighted UniFrac distances revealed that HPHF and HPHFO clustered together and separated from COSH and COSP at weeks 12 and 24, with relative abundances of Faecalibacterium, Romboutsia, and Fusobacterium increasing to a greater extent and Catenibacterium, Bifidobacterium, Prevotella 9, Eubacterium, and Megamonas decreasing to a greater extent in HPHF or HPHFO. Our results suggest that high-protein, high-fiber diets alter nutrient and energy digestibilities, fecal metabolite concentrations, and fecal gut microbiota, but spay surgery had minor effects. Future research is needed to investigate how food intake, nutrient profile, and changes in hormone production influence gut microbiota and metabolites of dogs individually and how this knowledge may be used to manage spayed pets., (© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
20. Physical activity patterns of free living dogs diagnosed with osteoarthritis.
- Author
-
Lee AH, Detweiler KB, Harper TA, Knap KE, de Godoy MRC, and Swanson KS
- Subjects
- Animals, Dogs, Pain Measurement, Quality of Life, Dog Diseases diagnosis, Osteoarthritis veterinary, Physical Conditioning, Animal
- Abstract
Osteoarthritis (OA) affects about 90% of dogs > 5 yr of age in the United States, resulting in reduced range of motion, difficulty climbing and jumping, reduced physical activity, and lower quality of life. Our objective was to use activity monitors to measure physical activity and identify how activity counts correlate with age, body weight (BW), body condition score (BCS), serum inflammatory markers, veterinarian pain assessment, and owner perception of pain in free-living dogs with OA. The University of Illinois Institutional Animal Care and Use Committee approved the study and owner consent was received prior to experimentation. Fifty-six client-owned dogs (mean age = 7.8 yr; mean BCS = 6.1) with clinical signs and veterinary diagnosis of OA wore HeyRex activity collars continuously over a 49-d period. Blood samples were collected on day 0 and 49, and dog owners completed canine brief pain inventory (CBPI) and Liverpool osteoarthritis in dogs (LOAD) surveys on day 0, 21, 35, and 49. All data were analyzed using SAS 9.3 using repeated measures and R Studio 1.0.136 was used to generate Pearson correlation coefficients between data outcomes. Average activity throughout the study demonstrated greater activity levels on weekends. It also showed that 24-h activity spiked twice daily, once in the morning and another in the afternoon. Serum C-reactive protein concentration was lower (P < 0.01) at day 49 compared to day 0. Survey data indicated lower (P < 0.05) overall pain intensity and severity score on day 21, 35 and 49 compared to day 0. BW was correlated with average activity counts (P = 0.02; r = -0.12) and run activity (P = 0.10; r = -0.24). Weekend average activity counts were correlated with owner pain intensity scores (P = 0.0813; r = -0.2311), but weekday average activity count was not. Age was not correlated with total activity count, sleep activity, or run activity, but it was correlated with scratch (P = 0.03; r = -0.10), alert (P = 0.03; r = -0.13), and walk (P = 0.09; r = -0.23) activities. Total activity counts and activity type (sleep, scratch, alert, walk, and run) were not correlated with pain scored by veterinarians, pain intensity or severity scored by owners, or baseline BCS. Even though the lack of controls and/or information on the individual living conditions of dogs resulted in a high level of variability in this study, our data suggest that the use of activity monitors have the potential to aid in the management of OA and other conditions affecting activity (e.g., allergy; anxiety)., (© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
21. Miscanthus Grass as a Novel Functional Fiber Source in Extruded Feline Diets.
- Author
-
Finet SE, Southey BR, Rodriguez-Zas SL, He F, and de Godoy MRC
- Abstract
Although dietary fiber is not considered an essential nutrient in a complete and balanced diet for felines, it provides a substrate for fermentation by gut microbiota, thus promoting gastrointestinal health through the production of fermentative metabolites, as well as improving laxation. The aim of this research was to evaluate the novel fiber source, Miscanthus grass ( Miscanthus giganteus ), in comparison with traditional fiber sources and their effects on fecal quality, apparent total tract digestibility (ATTD), fecal fermentative end products, and microbiota of healthy adult cats. Four dietary treatments were evaluated, differing in dietary fiber source. The diets were formulated to meet or exceed the AAFCO (2018) nutritional profile for adult cats and contained either cellulose (CO), Miscanthus grass fiber (MF), a blend of Miscanthus fiber and tomato pomace (MF + TP), or beet pulp (BP). The study was conducted using a completely randomized design with 28 neutered adult, domesticated shorthair cats (19 females and 9 males, mean age 2.2 ± 0.03 years; mean body weight 4.6 ± 0.7 kg, mean body condition score 5.6 ± 0.6). The experimental period comprised 21 days, and a fresh fecal and a total fecal collection were performed during the last 4 days of the trial period. Daily food intake (DM basis) was similar across all groups ( P > 0.05). Additionally, treatment did not affect fecal output (as-is or DM basis), fecal score, or fecal pH ( P > 0.05). Cats fed BP had significantly higher total dietary fiber ATTD than all the other treatments ( P < 0.05) and the highest concentrations of total short-chain fatty acid, acetate, and propionate ( P < 0.05), while butyrate concentrations were similar for all treatments ( P > 0.05). Inclusion of dietary fibers was effective in modulating gut microbiota. Cats fed diets containing Miscanthus grass had greater α-diversity than cats fed BP. As no adverse effects on health, fecal quality, or ATTD of macronutrients were observed with the inclusion of 9% Miscanthus grass fiber or fiber blend, the data suggest that Miscanthus grass fiber and fiber blends are viable alternatives to the traditional dietary fiber sources used in commercial extruded feline diets, being most comparable to cellulose., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Finet, Southey, Rodriguez-Zas, He and de Godoy.)
- Published
- 2021
- Full Text
- View/download PDF
22. Use of Legumes and Yeast as Novel Dietary Protein Sources in Extruded Canine Diets.
- Author
-
Reilly LM, He F, Rodriguez-Zas SL, Southey BR, Hoke JM, Davenport GM, and de Godoy MRC
- Abstract
The popularity of plant-based protein sources has increased as consumer demand for grain-free and novel protein sources increase. Minimal research has been conducted as regards to use of legumes and yeast and their effects on acceptability and digestibility in canine diets. The objective of this study was to evaluate macronutrient apparent total tract digestibility (ATTD), gastrointestinal tolerance, and fermentative end-products in extruded, canine diets. Five diets were formulated to be isocaloric and isonitrogenous with either garbanzo beans (GBD), green lentils (GLD), peanut flour (PFD), dried yeast (DYD), or poultry by-product meal (CON) as the primary protein sources. Ten adult, intact, female beagles (mean age: 4.2 ± 1.1 yr, mean weight: 11.9 ± 1.3 kg) were used in a replicated, 5 × 5 Latin square design with 14 d periods. Each experimental period consisted of 10 d of diet adaptation, followed by 4 d of total fecal and urine collection. A fasted, 5 ml blood sample was collected at the end of each period and analyzed for serum metabolites and complete blood count. Serum metabolites were within normal ranges and all dogs remained healthy throughout the study. Fecal quality, evaluated on a 5-point scale, was considered ideal. Macronutrient ATTD was similar among dietary treatments, with diets highly digestible (>80%). Total fecal branched-chain fatty acid concentrations were highest ( P < 0.05) for DYD (23.4 μmol/g) than GLD (16.1 μmol/g) and PFD (16.0 μmol/g) but not different ( P > 0.05) than other treatments. The plant-based protein treatments had greater ( P < 0.05) total fecal short chain fatty acid (SCFA) concentrations (average 627.6 μmol/g) compared with CON (381.1 μmol/g). Fecal butyrate concentration was highest ( P < 0.05) for DYD than all other dietary treatments (103.9 μmol/g vs. average 46.2 μmol/g). Fecal microbial communities showed Firmicutes, Bacteroidetes, Fusobacteria , and Proteobacteria as abundant phyla. There was greater β-diversity for dogs fed DYD which differed from all other diets in both weighted and unweighted UNIFRAC analyses. Inclusion of these novel, plant-based, protein sources showed no detrimental effects on nutrient digestibility or fecal characteristics and represent viable protein sources in canine diets that can produce beneficial shifts in fecal metabolites., Competing Interests: JH and GD are employed by ADM, company that supported this research. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Reilly, He, Rodriguez-Zas, Southey, Hoke, Davenport and de Godoy.)
- Published
- 2021
- Full Text
- View/download PDF
23. Amino acid digestibility and digestible indispensable amino acid score-like values of black soldier fly larvae fed different forms and concentrations of calcium using the precision-fed cecectomized rooster assay.
- Author
-
Do S, Koutsos EA, Utterback PL, Parsons CM, de Godoy MRC, and Swanson KS
- Subjects
- Amino Acids, Animal Feed analysis, Animal Nutritional Physiological Phenomena, Animals, Calcium, Calcium, Dietary, Cats, Chickens, Diet veterinary, Digestion, Dogs, Larva, Male, Cat Diseases, Diptera, Dog Diseases
- Abstract
Black soldier fly larvae (BSFL) are an alternative protein source for animals, including dogs and cats. Dietary calcium source is an essential nutrient for BSFL development in the pupal stage. Calcium carbonate (CaCO3) and calcium chloride (CaCl2) are common calcium sources but differ in solubility, acid-binding capacity, and calcium concentration. A high calcium concentration in BSFL may affect how well nitrogen and amino acids (AA) are digested by animals consuming them, thereby affecting feed conversion efficiency. Our objective was to determine the effects of dietary calcium form and concentration on nutrient composition, AA digestibility, and digestible indispensable amino acid score (DIAAS)-like values of BSFL intended for use in animal feeds using the precision-fed cecectomized rooster assay. All BSFL tested in this study were harvested at 18 d after hatch. Industry standard rearing conditions were maintained and a commercial layer ration was fed to all BSFL until 11 d post-hatch. From day 11 to 18, BSFL were fed a combination of distiller's dried grains with solubles from a distillery, bakery byproduct meal, and varied calcium sources. All BSFL diets contained 0.2% calcium in the basal diet plus additional calcium in the following amounts and forms: BSFLA: 1.2% CaCl2, BSFLB: 1.2% CaCO3, BSFLC: 0.75% CaCO3, and BSFLD: 0.6% CaCO3 + 0.6% CaCl2. On day 18, BSFL were washed and frozen. Prior to the rooster assay, BSFL were lyophilized and ground. In total, 16 cecectomized roosters (4 roosters per substrate) were randomly assigned to test substrates. After 24 h of feed withdrawal, roosters were tube-fed 20 g of test substrates. Following crop intubation, excreta were collected for 48 h. Endogenous corrections for AA were made using five additional cecectomized roosters. All data were analyzed using a completely randomized design and the GLM procedure of SAS 9.4. Nutrient and AA digestibilities were not different among substrates. DIAAS-like values were calculated to determine protein quality according to the Association of American Feed Control Officials nutrient profiles and National Research Council recommended allowances for dogs and cats. Although AA digestibilities did not differ, those containing CaCO3 generally had higher DIAAS-like reference values than the diet containing CaCl2 alone (BSFLA). Aromatic AA (Phe + Tyr) and sulfur AA (Met + Cys) were often first-limiting AA. Our results suggest that calcium sources fed to BSFL did not affect AA digestibility and protein quality., (© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
24. Ancient grains as novel dietary carbohydrate sources in canine diets.
- Author
-
Traughber ZT, He F, Hoke JM, Davenport GM, Rodriguez-Zas SL, Southey BR, and de Godoy MRC
- Subjects
- Animal Nutritional Physiological Phenomena, Animals, Diet veterinary, Dietary Carbohydrates, Dogs, Feces, Female, Gastrointestinal Tract, Animal Feed analysis, Digestion
- Abstract
Ancient grains are becoming an increasingly abundant carbohydrate source in the pet food market as a result of their popularity and novelty in the human market. Thus, it is imperative to evaluate the characteristics of these ingredients in vivo. Ten adult intact female beagles were used in a replicated 5 × 5 Latin square design. Five dietary treatments were evaluated containing either: rice (CON), amaranth (AM), white proso millet (WPM), quinoa (QU), or oat groats (OG). All diets were formulated to include 40% of the test grain and to be isonitrogenous, isocaloric, and nutritionally complete and balanced for adult dogs at maintenance. The objectives were 1) to evaluate the effects of the novel carbohydrate sources on total apparent total tract digestibility (ATTD), fecal microbiota, and fermentative end-product concentrations and 2) to evaluate the effects of novel carbohydrate sources on the postprandial glycemic and insulinemic responses in healthy adult dogs. All diets were well accepted by the dogs and fecal scores remained within the ideal range for all treatments. In terms of ATTD, all diets were well digested by the dogs; WPM had the highest digestibility of dry and organic matter in contrast with dogs fed the other treatments (P < 0.05). Additionally, ATTD of total dietary fiber was highest for WPM (72.6%) in contrast with QU (63.5%) and CON (50.8%) but did not differ from AM (65.7%) and OG (66.6%). Dogs fed AM or OG had greater (P < 0.05) fecal concentrations of total short-chain fatty acids, as well as propionate and butyrate concentrations, than CON. Ancient grain inclusion appears to beneficially shift fecal microbial populations, with increases in relative abundances of butyrogenic bacteria (i.e., members of the Lachnospiraceae family) observed for OG and reductions in Fusobacteriaceae for both AM and OG when compared with CON. Postprandial glycemic and insulinemic responses did not differ among treatments. Together, these data suggest that ancient grains can be included up to 40% of the diet while eliciting beneficial effects on the overall host health without detrimentally affecting nutrient digestibility., (© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society of Animal Science.)
- Published
- 2021
- Full Text
- View/download PDF
25. Effects of Weight Loss and Moderate-Protein, High-Fiber Diet Consumption on the Fasted Serum Metabolome of Cats.
- Author
-
Pallotto MR, Oba PM, de Godoy MRC, Pappan KL, Buff PR, and Swanson KS
- Abstract
Feline obesity elicits a plethora of metabolic responses leading to comorbidities, with potential reversal during weight loss. The specific metabolic alterations and biomarkers of organ dysfunction are not entirely understood. Untargeted, high-throughput metabolomic technologies may allow the identification of biological components that change with weight status in cats, increasing our understanding of feline metabolism. The objective of this study was to utilize untargeted metabolomic techniques to identify biomarkers and gain mechanistic insight into the serum metabolite changes associated with reduced food intake and weight loss in overweight cats. During a four-wk baseline period, cats were fed to maintain body weight. For 18 wk following baseline, cats were fed to lose weight at a rate of ~1.5% body weight/wk. Blood serum metabolites were measured at wk 0, 1, 2, 4, 8, 12, and 16. A total of 535 named metabolites were identified, with up to 269 of them being altered ( p - and q-values < 0.05) at any time point. A principal component analysis showed a continual shift in metabolite profile as weight loss progressed, with early changes being distinct from those over the long term. The majority of lipid metabolites decreased with weight loss; however, ketone bodies and small lipid particles increased with weight loss. The majority of carbohydrate metabolites decreased with weight loss. Protein metabolites had a variable result, with some increasing, but others decreasing with weight loss. Metabolic mediators of inflammation, oxidative stress, xenobiotics, and insulin resistance decreased with weight loss. In conclusion, global metabolomics identified biomarkers of reduced food intake and weight loss in cats, including decreased markers of inflammation and/or altered macronutrient metabolism.
- Published
- 2021
- Full Text
- View/download PDF
26. White and Red Sorghum as Primary Carbohydrate Sources in Extruded Diets of Felines.
- Author
-
von Schaumburg P, He F, Rodriguez-Zas SL, Southey BR, Parsons CM, and de Godoy MRC
- Abstract
The research objectives were to evaluate the effect of dietary supplementation of white ( WSH ) and red ( RSH ) sorghum grains on gastrointestinal health of felines through the determination of apparent total tract macronutrient digestibility ( ATTD ), fecal characteristics, fermentative end-products, and microbiota, compared with a traditional corn-based diet. We hypothesize that inclusion of RSH and WSH, respectively, would be well-accepted by cats, and the RSH and WSH diets would be comparable to corn when added as the main carbohydrate source in extruded diets. Three diets containing 30% corn, 30% WSH, or 30% RSH were formulated to meet or exceed the AAFCO (2018) nutrient profiles for cats during growth. Nine male cats (0.8 ± 0.00 yr) were randomly assigned to one of the three dietary treatments using a triplicated 3 × 3 Latin square design. Experimental periods consisted of 14 d (10 d of diet adaption and 4 d of total and fresh fecal collections). The ATTD of dry matter ( DM ) did not differ amongst treatments, organic matter was greatest ( P < 0.05) for both sorghum diets (86.4%) and lowest for the corn diet (84.2%), crude protein was comparable among diets ranging from 84.5 to 86.6%, acid hydrolyzed fat was high among diets varying between 91.4 and 92.8%, and total dietary fiber was greatest ( P < 0.05) for the WSH diet (56.0%) with the corn diet being lowest (44.7%). Digestible energy was greatest ( P < 0.05) for the WSH diet (4.66 kcal/g) and lowest for the corn diet (4.54 kcal/g), with the RSH diet being intermediate (4.64; P > 0.05). Fecal pH (6.3-6.5) and most fecal metabolites did not differ among diets except for phenol/indole concentrations that were significantly lower ( P < 0.05) in cats fed the RSH diet (1.5 μmole/g DM) than for cats fed the corn diet (2.1 μmole/g DM). Bacteroidetes, Firmicutes, Fusobacteria , and Proteobacteria were the major phyla observed in the microbiota of feces of cats fed the three experimental diets, with no differences seen amongst all treatments. Data indicate that dietary supplementation of these varieties of WSH and RSH as carbohydrate sources were well-tolerated by the cat., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 von Schaumburg, He, Rodriguez-Zas, Southey, Parsons and de Godoy.)
- Published
- 2021
- Full Text
- View/download PDF
27. Use of the precision-fed cecectomized rooster assay to determine standardized amino acid digestibility, true metabolizable energy content, and digestible indispensable amino acid scores of plant-based protein by-products used in canine and feline diets.
- Author
-
Reilly LM, von Schaumburg PC, Hoke JM, Davenport GM, Utterback PL, Parsons CM, and de Godoy MRC
- Abstract
Traditionally, protein by-products from oil seeds and cereal grains have been used in pet foods as sustainable, inexpensive, and protein-rich ingredients. However, the on-going demonization of soy- and corn-based ingredients continue to hinder their use in pet food and treat formulations. Ideally, the further demonstration of their protein quality and nutrient composition may encourage their favorable return as acceptable ingredients in pet foods and treats. Therefore, the objectives of this study were to determine the macronutrient composition, indispensable amino acid profile, standardized amino acid digestibility, true metabolizable energy content corrected for nitrogen (TMEn), and digestible indispensable amino acid scores (DIAAS-like) of soy flakes (SF), peanut flour (PF), soybean meal (SBM), and corn gluten meal (CGM). Standardized amino acid digestibility was assessed using the precision-fed cecectomized rooster assay. All test ingredients demonstrated a profile of highly digestible indispensable amino acids except for lysine in PF, which was lowest ( P < 0.05) at 45.5%. The SBM and CGM had the highest ( P > 0.05) digestibilities of indispensable amino acids. A DIAAS-like value was calculated for each ingredient using either AAFCO (2020) recommended values or NRC (2006) recommended allowances as the reference protein pattern. For adult dogs compared to AAFCO recommended values, the first-limiting amino acid was lysine for PF and CGM but it was methionine for SF and SBM. For adult cats compared to AAFCO recommended values, the first-limiting amino acid was lysine for PF and CGM but it was threonine for SF. There was no first-limiting amino acid in SBM for cats as DIAAS-like values were over 100% for all indispensable amino acids. The TMEn values were highest ( P < 0.05) for PF and CGM (4.58 and 4.31 kcal/g [dry matter basis], respectively). The protein quality of these plant-based protein by-products reflects their value as nutritional ingredients for canine and feline diets. However, the prior processing of these by-products must be considered before exposing them to additional processing methods, such as extrusion. Additionally, the inclusion of complementary proteins or supplemental amino acids will be needed to meet all indispensable amino acid requirements for a portion of nutritionally complete and balanced pet food., (© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society of Animal Science.)
- Published
- 2021
- Full Text
- View/download PDF
28. Nutrient digestibility and fecal characteristics, microbiota, and metabolites in dogs fed human-grade foods.
- Author
-
Do S, Phungviwatnikul T, de Godoy MRC, and Swanson KS
- Subjects
- Animal Feed analysis, Animal Nutritional Physiological Phenomena, Animals, Cattle, Diet veterinary, Dogs, Feces, Gastrointestinal Tract, Humans, Nutrients, Digestion, Microbiota
- Abstract
Human-grade (HG) pet foods are commercially available, but they have not been well studied. Our objective was to determine the apparent total tract digestibility (ATTD) of HG pet foods and evaluate their effects on fecal characteristics, microbiota, and metabolites, serum metabolites, and hematology of dogs. Twelve dogs (mean age = 5.5 ± 1.0; BW = 11.6 ± 1.6 kg) were used in a replicated 4 × 4 Latin square design (n = 12/treatment). The diets included 1) Chicken and Brown Rice Recipe (extruded; Blue Buffalo); 2) Roasted Meals Tender Chicken Recipe (fresh; Freshpet); 3) Beef and Russet Potato Recipe (HG beef; JustFoodForDogs); and 4) Chicken and White Rice Recipe (HG chicken; JustFoodForDogs). Each period consisted of 28 d, with a 6-d diet transition phase, 16 d of consuming 100% of the diet, a 5-d phase for fecal collection, and 1 d for blood collection. All data were analyzed using the Mixed Models procedure of SAS 9.4. Dogs fed the extruded diet required a higher (P < 0.05) daily food intake (dry matter basis, DMB) to maintain BW. The ATTD of dry matter (DM), organic matter (OM), energy, and acid-hydrolyzed fat (AHF) were greater (P < 0.05) in dogs fed the HG diets than those fed the fresh diet, and greater (P < 0.05) in dogs fed the fresh diet than those fed the extruded diet. Crude protein ATTD was lower (P < 0.05) for dogs fed the extruded diet than those fed all other diets. Dogs fed the extruded diet had greater (P < 0.05) fecal output (as-is; DMB) than dogs fed fresh (1.5-1.7 times greater) or HG foods (2.0-2.9 times greater). There were no differences in fecal pH, scores, and metabolites, but microbiota were affected by diet. Dogs fed HG beef had higher (P < 0.05) relative abundance of Bacteroidetes and lower (P < 0.05) relative abundance of Firmicutes than dogs fed the fresh or HG chicken diets. The Actinobacteria, Fusobacteria, Proteobacteria, and Spirochaetes phyla were unchanged (P > 0.05), but diet modified the relative abundance of nearly 20 bacterial genera. Similar to previous reports, these data demonstrate that the fecal microbiota of dogs fed HG or fresh diets is markedly different than those consuming extruded diets, likely due to ingredient, nutrient, and processing differences. Serum metabolites and hematology were not greatly affected by diet. In conclusion, the HG pet foods tested resulted in significantly reduced fecal output, were highly digestible, maintained fecal characteristics, serum chemistry, and hematology, and modified the fecal microbiota of dogs., (© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
29. Chemical composition and in vitro fermentation characteristics of ancient grains using canine fecal inoculum.
- Author
-
Traughber ZT, He F, Hoke JM, Davenport GM, and de Godoy MRC
- Subjects
- Animals, Digestion, Dogs, Feces, Fermentation, Dietary Fiber, Fatty Acids, Volatile
- Abstract
Human interest in ancient grains replacing traditional carbohydrate sources has reached the pet food market; however, chemical composition of these grains and their digestive properties in the canine model, specifically the fermentative characteristics, have not been established. Five ancient grain varieties were analyzed: amaranth (AM), white proso millet (WPM), oat groats (OG), quinoa (QU), and red millet (RM). Cellulose (CEL) was used as a negative control, and beet pulp (BP) was used as a positive control. Substrates were analyzed for macronutrient composition as well as free and hydrolyzed sugar profiles in addition to their in vitro fermentative characteristics. Substrates were allocated into 2 sets to allow for quantification of pH, short-chain fatty acids, and branched-chain fatty acids, as well as gas volume and composition. Samples were digested for 6 and 18 h with pepsin and pancreatin, respectively, prior to inoculation with fecal bacteria for 0, 3, 6, 9, or 12 h. Detectable levels of cereal β-glucans were observed solely in OG (3.5%), with all other substrate containing <0.35% cereal β-glucans. All test substrates had fairly similar macronutrient and starch profiles with the exception of RM that contained the highest resistant starch content (2.4%), with all other test substrates containing <0.5% resistant starch. However, the analyzed pseudocereals, AM and QU, had the highest concentrations of free glucose while the minor cereal grains, WPM, OG, and RM, contained the highest concentrations of hydrolyzed glucose. All test substrates had propionate production values similar or greater than BP after 3, 6, 9, and 12 h of fermentation, and similar or greater butyrate production values than BP after 6, 9, and 12 h. All substrates had greater (P < 0.05) changes in pH than CEL after 6, 9, and 12 h, with AM, WPM, OG, and RM having greater (P < 0.05) changes in pH than BP after 9 and 12 h. These data suggest select ancient grains have similar fermentation characteristics as BP, a moderately fermentable fiber considered the gold standard in terms of fiber sources in the pet food market today, and that OG and AM may be more fermentable during longer fermentation periods., (© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
30. Chemical composition and in vitro fermentation characteristics of legumes using canine fecal inoculum.
- Author
-
Traughber ZT, He F, Hoke JM, Davenport GM, and de Godoy MRC
- Abstract
Legumes are a popular grain-free alternative carbohydrate source in canine diets, however, information on their fermentative characteristics have not been established. Thus, the objectives of the present study were to 1) quantify the chemical compositions and 2) fermentative profile of select legumes using canine fecal inoculum. Five legume varieties, whole yellow peas ( WYP ), green lentils ( GL ), black bean grits ( BBG ), navy bean powder ( NBP ), and garbanzo beans, were analyzed and compared to a positive control, beet pulp ( BP ). Substrates were analyzed for gross energy ( GE ), dry and organic matter, crude protein ( CP ), acid hydrolyzed fat, and total dietary fiber ( TDF ) fractions, beta-glucans, starch-free, and hydrolyzed sugars, as well as fermentative characteristics: pH, short-chain fatty acids ( SCFA ), branched-chain fatty acids ( BCFA ), total gas, hydrogen, and methane. Substrates then underwent a two-stage in vitro digestion and subsequent fermentation using canine fecal inoculum for 0, 3, 6, 9, and 12 h. All test substrates contained approximately 8% to 9% moisture and 4.5 kcal/g GE. The highest CP content was observed in GL (27%). Analyzed TDF content of test substrates was greatest for WYP (32%) and GL (36%). Total starch content was greatest for GL (58%) and WYP (56%). Sucrose and stachyose were the most predominant free sugars and glucose was the most predominant hydrolyzed sugar among test substrates. After 3 and 6 h of fermentation, a net negative change in pH was observed among most substrates with a net negative change in all substrates after 9 and 12 h. Values for SCFA did not differ among substrates after 3 or 6 h of fermentation with BP and WYP among the greatest acetate (1,656 and 1,765 umol/g, respectively) and propionate production values (157.7 and 126.1, respectively) after 9 h. All substrates produced greater total gas volumes than WYP after 3 h, with no differences observed after any other time points. However, BP hydrogen production values were greater after 9 and 12 h ( P < 0.0001; 726,042 and 394,675 ng/g, respectively) with greater methane production values after 12 h ( P < 0.0001; 54,291 ng/g) than all test substrates. These data suggest that legumes offer a diverse macronutrient profile and appear to be a source of slowly fermentable fiber, which may have beneficial implications on the ratios of saccharolytic to proteolytic fermentation toward the distal colon., (© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science.)
- Published
- 2020
- Full Text
- View/download PDF
31. Companion Animal Nutrition Symposia 2020 - A Review.
- Author
-
Donadelli RA, de Godoy MRC, and Barry KA
- Published
- 2020
- Full Text
- View/download PDF
32. Extrusion of soybean hulls does not increase digestibility of amino acids or concentrations of digestible and metabolizable energy when fed to growing pigs.
- Author
-
Rodriguez DA, Lee SA, de Godoy MRC, and Stein HH
- Abstract
Two experiments were conducted to determine effects of extrusion on energy and nutrient digestibility in soybean hulls. One source of soybean hulls was ground and divided into two batches. One batch was used without further processing, whereas the other batch was extruded. In Exp. 1, four diets were formulated to determine crude protein (CP) and amino acid (AA) digestibility in soybean hulls. A soybean meal-based diet in which soybean meal provided all the CP and AA was formulated. Two diets were formulated to contain 30% nonextruded or extruded soybean hulls and 18% soybean meal. An N-free diet that was used to determine the endogenous losses of CP and AA was also used. Eight growing barrows (initial body weight = 37.0 ± 3.9 kg) had a T-cannula installed in the distal ileum and were allotted to a replicated 4 × 4 Latin square design. Each experimental period lasted 7 d with the initial 5 d being the adaptation period and ileal digesta were collected for 8 h on day 6 and 7. Results indicated that extrusion of soybean hulls did not change the standardized ileal digestibility (SID) of CP and most AA with the exception that the SID of Ile and Leu tended ( P < 0.10) to be greater in extruded than nonextruded soybean hulls. In Exp. 2, three diets were formulated to determine energy digestibility in soybean hulls. One corn-soybean meal based basal diet, and two diets that contained corn, soybean meal, and 32% extruded or nonextruded soybean hulls were formulated. Twenty-four growing barrows (initial body weight = 59.9 ± 3.4 kg) were allotted to a randomized complete block design. Pigs were housed individually in metabolism crates and feces and urine were collected separately for 4 d after 5 d of adaptation. The apparent total tract digestibility (ATTD) of gross energy (GE) and the digestible energy (DE) and metabolizable energy (ME) were reduced ( P < 0.05) in diets containing nonextruded or extruded soybean hulls compared with the basal diet. However, the ATTD of GE and values for DE and ME in soybean hulls were not improved by extrusion. Likewise, extrusion did not change the concentration of total dietary fiber in soybean hulls. In conclusion, there were no effects of extrusion of soybean hulls on SID of AA, energy digestibility, or ME concentration in soybean hulls., (© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science.)
- Published
- 2020
- Full Text
- View/download PDF
33. Effects of novel dental chews on oral health outcomes and halitosis in adult dogs.
- Author
-
Carroll MQ, Oba PM, Sieja KM, Alexander C, Lye L, de Godoy MRC, He F, Somrak AJ, Keating SCJ, Sage AM, and Swanson KS
- Subjects
- Animals, Dogs, Female, Gingivitis veterinary, Mastication, Outcome Assessment, Health Care, Sulfur Compounds, Dog Diseases therapy, Halitosis veterinary
- Abstract
Periodontal disease (PD) is the most common clinical condition occurring in adult dogs. The objective of this study was to evaluate the benefits of daily dental chew administration on oral health outcomes in adult dogs. Twelve adult (mean age = 5.31 ± 1.08 yr; mean BW = 13.12 ± 1.39 kg) female beagle dogs were used in a replicated 4 × 4 Latin square design consisting of 28-d periods. On day 0 of each period, teeth were cleaned by a veterinary dentist blinded to treatments. Teeth then were scored for plaque, calculus, and gingivitis by the same veterinary dentist on day 28 of each period. Breath samples were measured for malodor (volatile sulfur compounds) on days 1, 7, 14, 21, and 27 of each period. All dogs consumed the same commercial dry diet throughout the study. Control dogs were offered the diet only (CT), while treatment groups received the diet plus one of three dental chews. Two novel chews (Bones & Chews Dental Treats [BC]; Chewy, Inc., Dania Beach, FL and Dr. Lyon's Grain-Free Dental Treats [DL]; Dr. Lyon's, LLC, Dania Beach, FL) and a leading brand chew (Greenies Dental Treats [GR]; Mars Petcare US, Franklin, TN) were tested. Each day, one chew was provided 4 h after mealtime. All tooth scoring data were analyzed using the Mixed Models procedure of SAS (version 9.4; SAS Institute, Cary, NC). Halimeter data were analyzed using repeated measures using the Mixed Models procedure of SAS and testing for differences due to treatment, time, and treatment * time interaction. Data are reported as LS means ± SEM with statistical significance set at P < 0.05. DL performed at the same level as the leading brand, GR, as both resulted in lower (P < 0.05) plaque coverage and thickness scores, calculus coverage scores, and day 27 volatile sulfur concentrations compared with CT. Additionally, DL reduced (P < 0.05) volatile sulfur compounds on day 14 when compared with CT. BC reduced (P < 0.05) calculus coverage and day 27 volatile sulfur concentrations compared with CT. Our results suggest that the dental chews tested in this study may help slow the development and/or progression of PD in dogs., (© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
34. Use of precision-fed cecectomized rooster assay and digestible indispensable amino acid scores to characterize plant- and yeast-concentrated proteins for inclusion in canine and feline diets .
- Author
-
Reilly LM, von Schaumburg PC, Hoke JM, Davenport GM, Utterback PL, Parsons CM, and de Godoy MRC
- Abstract
Increased consumer interest in high-quality and novel protein sources has driven the demand for the inclusion of protein-rich ingredients in companion animal diets. Novel protein concentrates, with protein contents of at least 50%, have been used to satisfy these consumer demands. However, minimal information is available regarding the macronutrient composition and protein quality of these ingredients that is needed for proper formulation of pet foods. Therefore, the objectives of this study were to determine the macronutrient and amino acid compositions, standardized amino acid digestibility according to the precision-fed rooster assay, and protein quality using digestible indispensable amino acid score (DIAAS like) of pea protein (PP), potato protein (POP), faba bean protein (FBP), soy protein concentrate (SPC), and dried yeast (DY). Precision-fed rooster assays were conducted using cecectomized roosters to calculate standardized amino acid digestibility and true metabolizable energy corrected for nitrogen (TMEn). For all five protein concentrates, all essential amino acids were highly digestible (88.0% to 96.3%, dry matter basis) with differences ( P < 0.05) in only lysine, methionine, and tryptophan digestibilities. The TMEn values were highest for POP (4.22 kcal/g) and DY (3.61 kcal/g). The DIAAS-like values for adult dogs indicated that methionine was the first-limiting amino acid in all protein concentrates except POP, where the first-limiting amino acid was tryptophan. Using Association of American Feed Control Officials (AAFCO)-recommended values for adult cats, DIAAS-like values for methionine were lowest ( P < 0.05) for FBP at 81.5%, with all other amino acids for all protein concentrates over 100%. The National Research Council (NRC)-recommended allowances for adult cats indicated that DIAAS-like methionine values for PP (92.7%) and FBP (73.8%) were significantly lower ( P < 0.05) with these being the first-limiting amino acids, with the remaining amino acids above 100% for the other protein concentrates. The protein quality and high essential amino acid digestibility of these protein concentrates indicate that they would be viable protein sources in canine and feline diets. However, additional complementary protein sources should be included to meet the requirements of all essential amino acids., (© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science.)
- Published
- 2020
- Full Text
- View/download PDF
35. Macronutrient composition, true metabolizable energy and amino acid digestibility, and indispensable amino acid scoring of pulse ingredients for use in canine and feline diets.
- Author
-
Reilly LM, von Schaumburg PC, Hoke JM, Davenport GM, Utterback PL, Parsons CM, and de Godoy MRC
- Subjects
- Amino Acids metabolism, Amino Acids, Essential metabolism, Animals, Fatty Acids metabolism, Humans, Male, Nutrients, Nutritive Value, Animal Feed analysis, Cats physiology, Diet veterinary, Dogs physiology, Fabaceae chemistry, Plant Proteins chemistry
- Abstract
The rising consumer demand for alternative and sustainable protein sources drives the popularity of the use of plant-based proteins in the pet food industry. Pulse crops, which include beans, peas, lentils, and chickpeas, have become an important addition to both human and animal diets due to their protein content and functional properties. However, knowledge of their nutrient composition and protein quality is necessary for the proper formulation of these ingredients in pet foods. The objective of this study was to determine the macronutrient composition and standardized amino acid digestibility and to describe the protein quality through the use of digestible indispensable amino acid scores (DIAAS-like) of five pulse ingredients. Black bean (BB) grits, garbanzo beans (GB), green lentils (GL), navy bean (NB) powder, and yellow peas (YP) were analyzed for dry matter (DM), ash and organic matter (OM), crude protein (CP), gross energy (GE), acid hydrolyzed fat (AHF), and total dietary fiber (TDF) to determine the macronutrient composition. Precision-fed rooster assays were conducted using cecectomized roosters to calculate standardized amino acid digestibility and true metabolizable energy corrected for nitrogen (TMEn). The essential amino acids, with the exception of methionine, were highly digestible with digestibility values of 80% to 90% (dry matter basis) for all selected pulse ingredients. BB grits had the lowest (P < 0.05) digestibility of arginine (86.5%) and histidine (80.6%) in contrast to GB (94.9% and 89.9%, respectively). The TMEn of GB was highest (P < 0.05) at 3.56 kcal/g compared with the other pulses. The DIAAS-like values for adult dogs were consistently the lowest for methionine for all pulses, making it the first-limiting amino acid in these ingredients. The DIAAS-like values for adult cats showed GL had lowest (P < 0.05) score in tryptophan compared with other pulses when using both AAFCO values and NRC recommended allowances as reference proteins. Methionine was the first-limiting amino acid for YP and tryptophan for GL. Based on macronutrient composition, protein quality, and amino acid digestibility, it can be concluded that pulse ingredients have the required nutritional characteristics to be viable protein sources in canine and feline foods. However, the use of complementary protein sources is recommended to counterbalance any potential limiting amino acids in pulse ingredients., (© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
36. Evaluation of selected categories of pet treats using in vitro assay and texture analysis.
- Author
-
He F, Holben G, and de Godoy MRC
- Abstract
Treats are important contributors to the economics of the U.S. pet product industry. Not only do pet owners use them to build an emotional bond or interact with their pets, but treats also can deliver functional or health benefits. The objective of this study was to evaluate the digestion and safety of selected commercial treats by measuring their in vitro dry matter disappearance (DMD) using the modified in vitro method of Boisen and Eggum, which was developed to simulate in vivo digestibility of nonruminant animals. Twenty-five commercial treats were classified into six categories based on their appearance, size, and functionality. These categories included biscuit, chew, dental, meat product, rawhide, and cat treat. Each commercial product was analyzed in triplicate and in vitro DMD was calculated after enzymatic digestion and incubation. A wide variation in DMD was observed among and within different treat categories in both gastric and gastric + small intestinal phases of digestion. For the gastric phase, DMD ranged from 8.40% to 92.20%, whereas intestinal phase digestion had a DMD range of 35.10-100% ( P < 0.05). In general, treats from meat products, dental, chew, biscuit, and cat treat categories had a high DMD (>85%) after the intestinal phase, whereas DMD of rawhide treats varied from 35.10% to 95.70%. Principal component analysis, in addition, has visually shown that rawhide treats displayed the largest portion of variation from the other treats. A low DMD at gastric phase is a concern because it may pose a risk for gastrointestinal blockage and intolerance, particularly for treats of large size that remained intact during this phase. In vitro DMD results can be used as a potential predictor of in vivo digestibility, facilitate recommendations about pet treat safety for professionals and manufacturers in the pet industry, and assist pet owners in the treat selection process and with treat purchasing decisions., (© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science.)
- Published
- 2020
- Full Text
- View/download PDF
37. Effects of diet on body weight, body composition, metabolic status, and physical activity levels of adult female dogs after spay surgery.
- Author
-
Phungviwatnikul T, Valentine H, de Godoy MRC, and Swanson KS
- Subjects
- Adipose Tissue metabolism, Animals, Dietary Fiber metabolism, Dogs, Female, Leptin metabolism, Longitudinal Studies, Obesity metabolism, Obesity prevention & control, Obesity veterinary, Body Composition, Diet veterinary, Dog Diseases prevention & control, Hysterectomy veterinary, Physical Conditioning, Animal
- Abstract
Neutering is a risk factor for pet obesity, which reduces the quality and length of life. Dietary interventions may serve as preventive and therapeutic options for pet obesity. The objective of this study was to evaluate the effects of specially formulated diets on body weight (BW), body composition, and blood hormones and metabolites of adult female dogs after spay surgery. All procedures were approved by the University of Illinois Institutional Animal Care and Use Committee prior to experimentation. Twenty-eight healthy adult intact female Beagles (3.02 ± 0.7 yr; 10.28 ± 0.8 kg; body condition score [BCS]: 4.98 ± 0.57) were used in a longitudinal study. Twenty-four dogs were spayed and randomly allotted to one of three experimental diets: 1) moderate-protein, moderate-fiber diet (control; COSP), 2) high-protein, high-fiber diet (HP-HF), or 3) high-protein, high-fiber diet plus omega-3 and medium-chain fatty acids (HP-HF-O). Four dogs were sham-operated and fed the control diet (COSH). Food intake, BW, BCS, blood hormones and metabolites, body composition (via dual-energy X-ray absorptiometry scans), and voluntary physical activity (via Actical devices) were measured over time. After spay, dogs were fed to maintain BW for 12 wk (restricted phase), then allowed to overeat for 12 wk (ad libitum phase). Change from baseline data was analyzed for treatment, time, and treatment × time effects as well as treatment, feeding regimen, and treatment × feeding regimen effects. During the first 12 wk, HP-HF and HP-HF-O had lower (P < 0.01) blood cholesterol than COSH and COSP. During the second 12 wk, HP-HF and HP-HF-O ate more (P < 0.01) food (g/d) than COSH. BCS change for COSP was greater (P < 0.01) than COSH from week 21 to 24, but HP-HF and HP-HF-O were not different. When comparing data by feeding regimen, HP-HF and HP-HF-O had a greater reduction in serum cholesterol (P < 0.001) than COSH and COSP. During the second 12 wk, all spayed dogs consumed more (P < 0.01) food than COSH. However, COSH, HP-HF, and HP-HF-O had a lower (P < 0.001) increase in BCS than COSP. HP-HF-O and COSH had similar serum leptin during weeks 12 to 24. COSP had higher (P ≤ 0.01) serum C-reactive protein than HP-HF-O. Overall, body fat increase in COSP was greater (P < 0.05) than for COSH at week 24, while HP-HF and HP-HF-O were intermediate. Our results indicate that an HP-HF diet can limit weight gain and body fat increase and attenuate serum cholesterol, triglycerides, and leptin concentrations in dogs after spay surgery., (© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
38. Nutrient and AA digestibility of black soldier fly larvae differing in age using the precision-fed cecectomized rooster assay1.
- Author
-
Do S, Koutsos L, Utterback PL, Parsons CM, de Godoy MRC, and Swanson KS
- Subjects
- Animals, Diet veterinary, Digestion, Fatty Acids metabolism, Larva, Male, Nutrients, Species Specificity, Amino Acids metabolism, Animal Feed analysis, Animal Nutrition Sciences, Chickens metabolism, Proteins standards, Simuliidae
- Abstract
Edible insects such as black soldier fly larvae (BSFL) are alternative protein sources for animal feeds due to their high-protein content and potential low environmental footprint. However, protein quality and AA content may vary across insect species and age. Our objective was to determine the effects of age on nutrient and AA digestibility of BSFL intended for use in pet foods using the precision-fed cecectomized rooster assay. All animal procedures were approved by the University of Illinois Institutional Animal Care and Use Committee prior to experimentation. Twenty-four cecectomized roosters (four roosters per substrate) were randomly assigned to test substrates [BSFL0 = day 0 (day of hatch); BSFL11 = day 11; BSFL14 = day 14; BSFL18 = day 18; BSFL23 = day 23; BSFL29 = day 29]. After 24 h of feed withdrawal, roosters were tube-fed 20 g of test substrates. Following crop intubation, excreta were collected for 48 h. Endogenous corrections for AA were made using five additional cecectomized roosters. All data were analyzed using a completely randomized design and the GLM procedure of SAS 9.4. DM and OM digestibilities were not different among substrates, but acid-hydrolyzed fat digestibility tended to be greater (P < 0.10) for BSFL23 and BSFL29 than BSFL14 and BSFL18. Although all substrates had a high digestibility, BSFL0 and BSFL11 had the lowest (P < 0.05) digestibilities for most indispensable and dispensable AA. Digestible indispensable AA score (DIAAS)-like values were calculated to determine protein quality according to AAFCO nutrient profiles and NRC recommended allowances for dogs and cats. In general, BSFL18 had the highest, and BSFL11 had the lowest DIAAS-like values for most indispensable AA. Threonine, methionine, and tryptophan were often the first-limiting AA. Our results suggest that BSFL are a high-quality protein and AA source, but that age can affect the AA digestibility and protein quality of this alternative protein source., (© The Author(s) 2019. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
39. Dietary supplementation of a fiber-prebiotic and saccharin-eugenol blend in extruded diets fed to dogs.
- Author
-
Nogueira JPS, He F, Mangian HF, Oba PM, and De Godoy MRC
- Subjects
- Animal Feed analysis, Animals, Cellulose metabolism, Diet veterinary, Digestion drug effects, Feces chemistry, Feces microbiology, Female, Gastrointestinal Tract metabolism, Gastrointestinal Tract microbiology, Nutrients administration & dosage, Random Allocation, Saccharin administration & dosage, Dietary Fiber administration & dosage, Dietary Supplements analysis, Dogs physiology, Eugenol administration & dosage, Gastrointestinal Microbiome, Prebiotics administration & dosage
- Abstract
Prebiotics and dietary fibers are nondigestible ingredients that may confer benefits to the host by selectively stimulating beneficial intestinal bacteria and microbial-derived metabolites that support gut and host health. This experiment evaluated the effects of a blend of prebiotics and dietary fibers on apparent total tract digestibility (ATTD) and fecal metabolites related to gastrointestinal health in adult dogs. Four diets containing either 5% cellulose (control; CT), 5% dietary fiber and prebiotic blend (FP), 0.02% saccharin and eugenol (SE), or 5% fiber blend plus 0.02% saccharin and eugenol (FSE) were formulated to meet or exceed the AAFCO (2017) nutritional requirements for adult dogs. Eight adult female beagles (mean age 4.2 ± 1.1 yr; mean BW = 10.8 ± 1.4 kg; mean BCS = 5.8 ± 0.6) were randomly assigned to 1 of the 4 dietary treatments using a replicated 4 × 4 Latin square design. Each experimental period consisted of 14 d (10 d of diet adaptation and 4 d of total and fresh fecal and total urine collection). All animals remained healthy throughout the study, with serum metabolites being within reference ranges for adult dogs. All diets were well accepted by the dogs, resulting in similar (P > 0.05) daily food intakes among treatments. Likewise, fecal output and scores did not differ (P > 0.05) among dietary treatments, with the latter being within the ideal range (2.5-2.9) in a 5-point scale. All diets were highly digestible and had similar (P > 0.05) ATTD of dry matter (81.6%-84.4%), organic matter (86.4%-87.3%), and crude protein (86.6%-87.3%). However, total dietary fiber (TDF) digestibility was greater for dogs fed the FSE diet (P < 0.05) in contrast with dogs fed the CT and SE diets, whereas dogs fed FP diets had intermediate TDF digestibility, but not different from all other treatments. Fecal acetate and propionate concentrations were greater (P < 0.05) for dogs fed FP and FSE diets. Fecal concentrations of isobutyrate and isovalerate were greater for dogs fed CT (P < 0.05) compared with dogs fed the other three treatments. No shifts in fecal microbial richness and diversity were observed among dietary treatments. Overall, the data suggest that dietary supplementation of fiber and prebiotic blend was well tolerated by dogs, did not cause detrimental effects on fecal quality or nutrient digestibility, and resulted in beneficial shifts in fecal metabolites that may support gut health., (© The Author(s) 2019. Published by Oxford University Press on behalf of the American Society of Animal Science.)
- Published
- 2019
- Full Text
- View/download PDF
40. Effects of a Saccharomyces cerevisiae fermentation product on fecal characteristics, nutrient digestibility, fecal fermentative end-products, fecal microbial populations, immune function, and diet palatability in adult dogs1.
- Author
-
Lin CY, Alexander C, Steelman AJ, Warzecha CM, de Godoy MRC, and Swanson KS
- Subjects
- Animal Feed analysis, Animals, Diet veterinary, Digestion drug effects, Dogs immunology, Feces chemistry, Feces microbiology, Female, Fermentation, Male, Nutrients metabolism, Bifidobacterium growth & development, Dietary Supplements analysis, Dogs physiology, Gastrointestinal Microbiome, Saccharomyces cerevisiae
- Abstract
Yeast products may serve as functional ingredients due to their benefits on host health but vary greatly in source, composition, and functionality, justifying research in host species of interest. In this study, a Saccharomyces cerevisiae fermentation product (SCFP) was investigated as a dietary supplement for adult dogs. Adult female beagles (n = 12; mean age = 3.3 ± 0.8 yr; mean BW = 10.3 ± 0.68 kg) were fed the same diet, but supplemented with three levels of SCFP (125, 250, and 500 mg/d) or a placebo (sucrose) via gelatin capsules in a replicated 4 × 4 Latin square design. Fecal samples for nutrient digestibility, fecal characteristics and microbial populations as well as blood samples for immune indices were collected after a 21-d adaptation phase in each period. A separate palatability test was conducted to examine palatability of an SCFP-containing diet (0.2% of diet). All data, except for palatability data, were analyzed by Mixed Models procedure of SAS (version 9.4). A paired t-test was conducted to analyze data from the palatability test. Supplementation of SCFP did not affect total tract apparent macronutrient and energy digestibilities or fecal characteristics. Fecal phenol and total phenol + indole concentrations decreased linearly with SCFP dosage (P < 0.05). Relative abundance of Bifidobacterium was greater (P < 0.05), while Fusobacterium was lower (P < 0.05) in SCFP-supplemented dogs. Total white blood cell counts were decreased by SCFP (P < 0.05). The percentage of natural killer cells and antigen-presenting cells were not altered by SCFP. However, when comparing control vs. all SCFP treatments, SCFP-supplemented dogs had greater (P < 0.05) major histocompatibility complex class II presenting B cell and monocyte populations than control dogs. IFN-γ secreting helper and cytotoxic T cells increased linearly with SCFP consumption (P < 0.05). Immune cells derived from SCFP-supplemented dogs produced less (P < 0.05) TNF-α than those from control dogs when cells were stimulated with agonists of toll-like receptors 2, 3, 4, and 7/8. A linear increase (P < 0.05) in serum IgE with SCFP dosage was noted. In the palatability test, a 1.9:1 consumption ratio was observed for the SCFP-containing diet vs. control diet, demonstrating a preference (P < 0.05) for SCFP. Results of this study suggest that SCFP supplementation may be beneficial to adult dogs by positively altering gut microbiota, enhancing immune capacity and reducing inflammation., (© The Author(s) 2019. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2019
- Full Text
- View/download PDF
41. Chemical composition, true nutrient digestibility, and true metabolizable energy of chicken-based ingredients differing by processing method using the precision-fed cecectomized rooster assay1.
- Author
-
Oba PM, Utterback PL, Parsons CM, de Godoy MRC, and Swanson KS
- Subjects
- Amino Acids metabolism, Animal Feed analysis, Animal Nutritional Physiological Phenomena, Animals, Cats, Diet veterinary, Digestion, Energy Metabolism, Male, Nutrients metabolism, Poultry Products analysis, Proteins metabolism, Animal Feed standards, Chickens, Poultry Products standards
- Abstract
Chicken-based ingredients are commonly used in pet food products, but vary greatly in nutrient composition and processing conditions that may affect their protein quality and digestibility. Testing the quality of protein sources undergoing different processing conditions provides important information to pet food producers. The objective of this study was to determine the chemical composition, nutrient digestibility, protein, and AA digestibility scores, and nitrogen-corrected true metabolizable energy (TMEn) of chicken-based ingredients that had undergone different processing conditions (i.e., chicken meal, raw chicken, retorted chicken, and steamed chicken) using the precision-fed cecectomized rooster assay. True nutrient digestibility was variable among the protein sources (60% to 76% of DM, 66% to 81% of OM, 83% to 90% of AHF, 50% to 95% of AA and 73% to 85% of TMEn/GE). In general, the chicken meal had a lower (P < 0.05) nutrient digestibility than other ingredients tested, including DM, OM, and most indispensable and dispensable AA, with most having a true digestibility between 75% and 85%. The steamed chicken had the highest indispensable AA digestibilities, with all having a true digestibility greater than 88% and most being over 90%. TMEn value and digestible indispensable AA scores (DIAAS)-like values were higher (P < 0.0001) in the less processed chicken-based ingredients in comparison to chicken meal. Although animal proteins are often considered to be complete proteins, DIAAS-like values <100% suggest that ingredients like chicken meal may not provide all indispensable AA when included at levels to the meet minimal crude protein recommendation. Although raw protein sources are often touted as being the most digestible and of the highest quality, the steamed chicken had the highest (P < 0.0001) DIAAS-like values in this study. This study demonstrates the considerable variability that exists, not only in the chemical composition but also in the true nutrient digestibility among chicken-based ingredients undergoing different processing conditions. These data justify more in vivo testing and the use of DIAAS-like values that consider AA profile, in vivo digestibility, and species-specific recommendations, to evaluate protein-based ingredients intended for use in dog and cat foods., (© The Author(s) 2018. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2019
- Full Text
- View/download PDF
42. Effects of high inclusion of soybean hulls on apparent total tract macronutrient digestibility, fecal quality, and fecal fermentative end-product concentrations in extruded diets of adult dogs.
- Author
-
Detweiler KB, He F, Mangian HF, Davenport GM, and de Godoy MRC
- Subjects
- Animals, Beta vulgaris, Cellulose administration & dosage, Diet veterinary, Eating, Fatty Acids, Volatile analysis, Feces chemistry, Female, Fermentation drug effects, Gastrointestinal Tract drug effects, Gastrointestinal Tract metabolism, Animal Feed analysis, Dietary Fiber administration & dosage, Digestion drug effects, Dogs physiology, Nutrients metabolism, Glycine max
- Abstract
Soybean hulls (SBH) are a fiber-rich co-product of the soybean oil extraction process that corresponds to 8% of the soybean seed. Despite being readily available and priced competitively, SBH are underutilized in monogastric nutrition. Thus, the objective of this study was to evaluate SBH as a dietary fiber in canine diets. Four diets were formulated with either SBH, beet pulp (BP), or cellulose (CL) as the main source of dietary fiber (15% total dietary fiber [TDF]), with the control diet formulated with no supplemental fiber (NF). Animal procedures were approved by the University of Illinois Institutional Animal Care and Use Committee. Eight adult female Beagle (mean age = 4.6 ± 0.6 yr; mean BW = 12.8 ± 1.7 kg) were used in a replicated 4 × 4 Latin square design. Each period consisted of 14 d, with 10 d of diet adaptation followed by 4 d of total fecal and urine collections. At the end of each period, a blood sample was collected and analyzed for serum chemistry. Food was offered twice daily and fed to maintain body weight. Food intake (g/d) on a dry matter basis (DMB) did not differ among treatments. Fecal score was lower (P < 0.05) for dogs fed CL (2.0) in contrast with other dietary treatments (2.3), using a 5-point scale (1 = hard, dry pellets; 5 = diarrhea). Fecal as-is and DM output did not differ for dogs fed BP, CL, or SBH, and were approximately 50% greater (P < 0.05) than dogs fed NF. Apparent total tract digestibility (ATTD) of dry matter, organic matter, and gross energy were greater (P < 0.05) for dogs fed NF when compared with dogs fed BP, CL, or SBH. Dogs fed CL had greater (P < 0.05) AHF ATTD (94%) compared with all other treatments (mean = 91%). Dogs fed CL and NF had greater (P < 0.05) CP ATTD, 87% and 86%, respectively, while dogs fed SBH were intermediate (83%) and dogs fed BP were lowest (79%). Total short-chain fatty acid (SCFA) concentration was greatest in dogs fed BP (582.5 μmol/g) and SBH (479.7 μmol/g) when compared with NF and CL (267.0 and 251.1 μmol/g, respectively). Serum metabolites were within-reference ranges and dogs remained healthy throughout the study. In conclusion, SBH resulted in similar macronutrient ATTD when compared with BP and CL. Dogs fed SBH were also observed to have an increase in fecal SCFA concentration. In general, high level addition of SBH were well-utilized by the dog, resulting in no untoward effects on dog health, nutrient digestibility, or fecal characteristics., (© The Author(s) 2019. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2019
- Full Text
- View/download PDF
43. Extruded feline diets formulated with high inclusion of soybean hulls: effects on apparent total tract macronutrient digestibility, and fecal quality and metabolites.
- Author
-
Detweiler KB, He F, Mangian HF, Davenport GM, and de Godoy MRC
- Subjects
- Animals, Beta vulgaris, Cellulose administration & dosage, Diet veterinary, Digestion drug effects, Eating, Fatty Acids, Volatile analysis, Feces chemistry, Fermentation drug effects, Gastrointestinal Tract drug effects, Gastrointestinal Tract metabolism, Male, Animal Feed analysis, Cats physiology, Dietary Fiber administration & dosage, Digestion physiology, Nutrients metabolism, Glycine max
- Abstract
Dietary fibers have gained renewed interest in companion animal nutrition as a means to manage pet obesity and improve gut and host health. Soybean hulls (SBH), a coproduct of the soybean oil extraction process, is an accessible and economical fiber source. However, limited research is available on the use of SBH in feline nutrition. Thus, the aim of this study was to determine the effects of a high SBH inclusion level on daily food intake, apparent total tract (ATT) macronutrient digestibility, fecal quality, and fecal fermentative end products in diets of adult cats. Four diets were formulated with either SBH, beet pulp (BP), or cellulose (CL) as the main source of dietary fiber, with the control diet formulated with no added fiber (NF). The fiber treatments were formulated to achieve approximately 15% total dietary fiber (TDF). Eight adult male cats (mean age = 10.5 yr ± 0.1; mean BW = 6.1 ± 0.8 kg) were used in a replicated 4 × 4 Latin square design. Each period consisted of 14 d, with 10 d of diet adaptation followed by 4 d of total fecal and urine collections. Food was offered twice daily and cats were fed to maintain BW. Food intake on a DM basis (DMB) was lower (P < 0.05) in cats fed BP (55.2 g/d) when compared with SBH (70.8 g/d). As-is fecal output did not differ in cats fed BP or SBH, and when expressed on a DMB, fecal output did not differ among fiber treatments. The ATT digestibility of DM, OM, and GE was greater (P < 0.05) in cats fed NF when compared with those fed BP, CL, or SBH. Cats fed CL had the greatest (P < 0.05) ATT CP digestibility (88.5%), followed by cats fed NF (84.9) and SBH (81.7%) with the lowest values (77%) noted for cats fed BP. Acid-hydrolyzed fat (AHF) digestibility was greater for cats fed CL (92.9%) than for cats fed BP (86.9%) and SBH (88.6%). The TDF ATT digestibility was lowest for cats fed NF and CL (8.5% and 15.1%, respectively), followed by SBH (18.0%), with BP having the highest digestibility (33.7%). Total short-chain fatty acid concentration was greatest (P < 0.05) in cats fed BP (699.7 μmole/g) when compared with the other 3 treatments, whereas phenol and indole concentrations did not differ among treatments. In conclusion, a high inclusion level (15% TDF) of SBH appears acceptable in diets for adult cats, resulting in no negative effects on daily food intake, fecal scores, and similar ATT digestibility for most macronutrients when compared with BP and CL., (© The Author(s) 2019. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2019
- Full Text
- View/download PDF
44. Apparent total-tract macronutrient digestibility, serum chemistry, urinalysis, and fecal characteristics, metabolites and microbiota of adult dogs fed extruded, mildly cooked, and raw diets1.
- Author
-
Algya KM, Cross TL, Leuck KN, Kastner ME, Baba T, Lye L, de Godoy MRC, and Swanson KS
- Subjects
- Ammonia metabolism, Animal Nutritional Physiological Phenomena, Animals, Diet veterinary, Feces chemistry, Male, Microbiota, Nutrients, Urinalysis, Animal Feed, Cooking, Digestion, Dogs physiology, Gastrointestinal Tract metabolism, Raw Foods
- Abstract
Despite their popularity, little research has been performed on lightly cooked and raw diet formats for pets. Therefore, the objective of this study was to determine the apparent total-tract macronutrient digestibility (ATTD); fecal characteristics, metabolites, and microbiota; serum chemistry metabolites; urinalysis; and voluntary physical activity levels of adult dogs fed commercial diets differing in processing type. The diets included: 1) extruded dry kibble (EXT) diet; 2) high-moisture roasted refrigerated (RR) diet; 3) high-moisture grain-free roasted refrigerated (GFRR) diet; and 4) raw (RAW) diet. Eight dogs (mean age = 3.6; mean BW = 13.0 kg) were used in a replicated 4 × 4 Latin square design. Each period consisted of 28 d, with a 14-d adaptation phase followed by a 7-d phase for measuring voluntary physical activity, 1-d adaptation phase to metabolic cages, 5-d phase for fecal and urine collection, and 1 d for blood collection. Except for microbiota, all data were analyzed statistically by mixed models using SAS. Microbiota data were analyzed using Quantitative Insights Into Microbial Ecology (QIIME) and Statistical Analyses of Metagenomic Profiles (STAMP) software. Many differences in digestibility were observed, including greater (P < 0.05) ATTD of CP and fat in dogs fed GFRR and RR than dogs fed EXT. Dogs fed RAW had the lowest fecal pH and DM %, but fecal scores were not affected. Dogs fed RR had higher (P < 0.05) fecal indole and total phenol and indole concentrations than dogs fed the other diets. Dogs fed RAW had a higher (P < 0.05) fecal ammonia concentration than dogs fed the other diets. Fecal microbial diversity was altered by diet, with dogs fed GFRR and RAW having reduced species richness than dogs fed EXT. Dogs fed RR, GFRR, or RAW had lower (P < 0.05) Actinobacteria and higher (P < 0.05) Fusobacteria than dogs fed EXT. Dogs fed RAW or GFRR had higher (P < 0.05) Proteobacteria than dogs fed EXT or RR. Dogs fed RAW had higher (P < 0.05) Bacteroidetes and lower (P < 0.05) Firmicutes than dogs fed EXT. Serum triglycerides were within reference ranges, but greater (P < 0.05) in dogs fed EXT than dogs fed GFRR and RAW. All diets were well tolerated and dogs remained healthy throughout the study. In conclusion, the lightly cooked and raw diets tested were highly palatable, highly digestible, reduced blood triglycerides, maintained fecal quality and serum chemistry, and modified the fecal microbial community of healthy adult dogs., (© The Author(s) 2018. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2018
- Full Text
- View/download PDF
45. Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs.
- Author
-
Alexander C, Cross TL, Devendran S, Neumer F, Theis S, Ridlon JM, Suchodolski JS, de Godoy MRC, and Swanson KS
- Subjects
- Animals, Area Under Curve, Bile Acids and Salts metabolism, Blood Glucose metabolism, Dogs, Fatty Acids, Volatile metabolism, Female, Firmicutes growth & development, Fructans therapeutic use, Glucagon-Like Peptide 1 blood, Insulin blood, Inulin therapeutic use, Postprandial Period, Proteobacteria growth & development, Colon metabolism, Colon microbiology, Feces chemistry, Feces microbiology, Fructans pharmacology, Gastrointestinal Microbiome drug effects, Inulin pharmacology, Obesity drug therapy, Obesity metabolism, Obesity microbiology, Obesity veterinary, Prebiotics
- Abstract
Because obesity is associated with many co-morbidities, including diabetes mellitus, this study evaluated the second-meal effect of a commercial prebiotic, inulin-type fructans, and the effects of the prebiotic on faecal microbiota, metabolites and bile acids (BA). Nine overweight beagles were used in a replicated 3×3 Latin square design to test a non-prebiotic control (cellulose) against a low (equivalent to 0·5 % diet) and high dose (equivalent to 1·0 % diet) of prebiotic over 14-d treatments. All dogs were fed the same diet twice daily, with treatments provided orally via gelatin capsules before meals. On days 13 or 14 of each period, fresh faecal samples were collected, dogs were fed at 08.00 hours and then challenged with 1 g/kg body weight of maltodextrin in place of the 16.00 hours meal. Repeated blood samples were analysed for glucose and hormone concentrations to determine postprandial incremental AUC (IAUC) data. Baseline glucose, insulin and active glucagon-like peptide-1 levels were similar between all groups (P>0·10). Glucose and insulin IAUC after glucose challenge appeared lower following the high dose, but did not reach statistical relevance. Prebiotic intervention resulted in an increase in relative abundance of some Firmicutes and a decrease in the relative abundance of some Proteobacteria. Individual and total faecal SCFA were significantly increased (P<0·05) following prebiotic supplementation. Total concentration of excreted faecal BA tended to increase in dogs fed the prebiotic (P=0·06). Our results indicate that higher doses of inulin-type prebiotics may serve as modulators of gut microbiota, metabolites and BA pool in overweight dogs.
- Published
- 2018
- Full Text
- View/download PDF
46. PANCOSMA COMPARATIVE GUT PHYSIOLOGY SYMPOSIUM: ALL ABOUT APPETITE REGULATION: Effects of diet and gonadal steroids on appetite regulation and food intake of companion animals.
- Author
-
de Godoy MRC
- Subjects
- Animals, Cats, Diet veterinary, Dogs, Eating, Obesity prevention & control, Overweight prevention & control, Quality of Life, Weight Loss, Appetite Regulation physiology, Dietary Fiber pharmacology, Gonadal Steroid Hormones pharmacology, Obesity veterinary, Overweight veterinary, Pets physiology
- Abstract
The prominent incidence of overweight and obese pet animals not only results in higher morbidity and mortality, but also poses a threat for the quality of life, longevity, and well-being of dogs and cats. To date, strategies to prevent BW gain or to induce weight loss have had modest success in the pet population. In part, due to the complexity and the multifactorial nature of this disease, which involves pet-human interaction, environmental and dietary factors, and an intertwined metabolic process that still is not fully understood. As such, research methods to investigate the role of physiological hormones and dietary management on mechanisms related to the control of feelings of satiety and hunger in pet animals is warranted. Increasing interest exists in exploring gut chemosensing mechanisms, the crosstalk between metabolic-active tissues, and the interface between the gut microbiota and the nervous system (gut-brain axis). The noninvasive nature of research conducted in companion animals focuses on systemic approaches to develop environmental, nutritional, or therapeutic interventions that can be translated from research settings to pet-owned households. Because the majority of the pet population is spayed or neutered, it is important to determine the effect that sex hormones might have on appetite regulation and fasting metabolic rate of these animals. In general, studies have revealed that gonadectomy may establish a new "set point" characterized by increased food intake and BW, accompanied by physiological and behavioral changes. Some studies have also shown associations between gonadectomy and alterations in appetite-related hormones (e.g., ghrelin, leptin, adiponectin, glucagon-like peptide-1). Manipulation of macronutrients in diets of dogs and cats have also been investigated as a mean to improve satiety. Most of the research in this area has focused on high-protein diets, predominantly, for cats, and the use of dietary fiber sources of contrasting fermentability and viscosity profiles. Dietary fibers may affect the production of fermentative end products and gut microbiome, digestive and absorptive processes, appetite-related hormones, and promote "gut fill" and satiety. More recent studies have reported profound effects of dietary manipulation on the phylogeny and functional capacity of gut microbial communities of dogs and cats.
- Published
- 2018
- Full Text
- View/download PDF
47. Longitudinal changes in blood metabolites, amino acid profile, and oxidative stress markers in American Foxhounds fed a nutrient-fortified diet.
- Author
-
Beloshapka AN, de Godoy MRC, Carter RA, Fascetti AJ, Yu Z, McIntosh BJ, Swanson KS, and Buff PR
- Subjects
- Animal Feed analysis, Animals, Body Weight, Female, Longitudinal Studies, Male, Nutritional Status, Oxidative Stress, Physical Conditioning, Animal, Triglycerides blood, United States, Amino Acids blood, Diet veterinary, Dogs physiology, Food, Fortified, Taurine blood, Vitamin E blood
- Abstract
The objective of the present study was to evaluate the changes in blood metabolites, AA profile, and oxidative stress markers in American Foxhound dogs fed a nutrient-fortified endurance diet while undergoing unstructured endurance exercise over several months. Thirty-six adult American Foxhound dogs (mean age: 4.5, range 2 to 10 yr and mean BW: 34.7, range: 23.1 to 46.9 kg) were selected to participate in the study. Prior to the study, all dogs consumed a commercial diet for 16 wk. After collecting baseline blood samples, dogs were assigned to a standard commercial performance diet (control) or a nutrient-fortified dog food (test). Dogs were balanced by gender, age, body weight, and athletic performance between diets. During the study, dogs underwent 78 bouts of exercise, with approximately 22 km/bout. Blood samples were collected after 40, 75, 138, and 201 d on study (October 2012 to March 2013). All blood metabolites were similar at baseline and serum chemistry profile remained within normal ranges throughout the study. Over time, plasma taurine and vitamin E concentrations decreased (P < 0.05) in dogs fed the control diet but were maintained or increased (P < 0.05) in dogs fed the treatment diet. Also, plasma creatinine and triglycerides were lower (P < 0.05) and blood phosphorus and alkaline phosphatase were higher (P < 0.05) in dogs fed the treatment diet. Vitamin E and taurine status of dogs appear to be affected by extended endurance exercise. These data suggest dogs undergoing endurance exercise may benefit from supplementation of vitamin E and taurine to minimize oxidation and maintain taurine status.
- Published
- 2018
- Full Text
- View/download PDF
48. Effects of weight loss with a moderate-protein, high-fiber diet on body composition, voluntary physical activity, and fecal microbiota of obese cats.
- Author
-
Pallotto MR, de Godoy MRC, Holscher HD, Buff PR, and Swanson KS
- Subjects
- Animal Feed, Animals, Body Weight, Cat Diseases microbiology, Cats, Dietary Fiber administration & dosage, Eating, Gastrointestinal Microbiome, Male, Obesity diet therapy, Physical Conditioning, Animal, Body Composition, Cat Diseases diet therapy, Diet veterinary, Diet, Protein-Restricted veterinary, Feces microbiology, Obesity veterinary, Weight Loss
- Abstract
OBJECTIVE To determine effects of restriction feeding of a moderate-protein, high-fiber diet on loss of body weight (BW), voluntary physical activity, body composition, and fecal microbiota of overweight cats. ANIMALS 8 neutered male adult cats. PROCEDURES After BW maintenance for 4 weeks (week 0 = last week of baseline period), cats were fed to lose approximately 1.5% of BW/wk for 18 weeks. Food intake (daily), BW (twice per week), body condition score (weekly), body composition (every 4 weeks), serum biochemical analysis (weeks 0, 1, 2, 4, 8, 12, and 16), physical activity (every 6 weeks), and fecal microbiota (weeks 0, 1, 2, 4, 8, 12, and 16) were assessed. RESULTS BW, body condition score, serum triglyceride concentration, and body fat mass and percentage decreased significantly over time. Lean mass decreased significantly at weeks 12 and 16. Energy required to maintain BW was 14% less than National Research Council estimates for overweight cats and 16% more than resting energy requirement estimates. Energy required for weight loss was 11% more, 6% less, and 16% less than American Animal Hospital Association recommendations for weight loss (80% of resting energy requirement) at weeks 1 through 4, 5 through 8, and 9 through 18, respectively. Relative abundance of Actinobacteria increased and Bacteroidetes decreased with weight loss. CONCLUSIONS AND CLINICAL RELEVANCE Restricted feeding of a moderate-protein, high-fiber diet appeared to be a safe and effective means for weight loss in cats. Energy requirements for neutered cats may be overestimated and should be reconsidered.
- Published
- 2018
- Full Text
- View/download PDF
49. Influence of feeding a fish oil-containing diet to mature, overweight dogs: Effects on lipid metabolites, postprandial glycaemia and body weight.
- Author
-
de Godoy MRC, McLeod KR, and Harmon DL
- Subjects
- Animals, Blood Glucose, Dogs, Female, Lipid Metabolism, Overweight diet therapy, Postprandial Period, Animal Feed analysis, Diet veterinary, Dog Diseases diet therapy, Fish Oils pharmacology, Overweight veterinary
- Abstract
The objective of this study was to determine the effect of feeding a fish oil (FO)-containing diet on lipid and protein metabolism, postprandial glycaemia and body weight (BW) of mature, overweight dogs. Seven female dogs were randomly assigned to one of two isonitrogenous and isocaloric diets, control (CO) or FO (FO), in a crossover design. Experimental periods were 69 day, separated by a washout period of 30 day. At the beginning of the experiment, and at 30 and 60 day of feeding the experimental diets, the dogs were infused with D-glucose (2 g/kg BW) through an intravenous catheter. Blood samples were collected for 3 hr to perform a glucose tolerance test. Nitrogen balance measurements began at 06:30 on d 63 of each experimental period and ended at 06:30 on d 69. On d 66 of each period, a single dose (7.5 mg/kg) of
15 N-glycine was administered orally for determination of protein turnover. Incremental area under the curve and glucose concentration at peak did not differ between treatments or among sampling days within treatment. Glucose half-life tended to decrease (p < .10) in the FO treatment on day 30 when compared to baseline (day 0). β-hydroxybutyrate, non-esterified fatty acid (NEFA) and triglycerides did not differ within or between treatments. Cholesterol decreased (p < .05) on the FO treatment on day 30, 60 and 69 when compared to day 0. High-density lipoprotein (HDL) decreased (p < .05) in the FO treatment on day 69 when compared to day 0. Body weight, food intake, faecal excretion, DM and N digestibilities, N balance and protein turnover were not different between diets. Overall, FO-containing diet decreases cholesterol in mature overweight dogs; however, further research is warranted to verify the effects of FO on glucose metabolism., (© 2017 Blackwell Verlag GmbH.)- Published
- 2018
- Full Text
- View/download PDF
50. Soy Improves Cardiometabolic Health and Cecal Microbiota in Female Low-Fit Rats.
- Author
-
Cross TL, Zidon TM, Welly RJ, Park YM, Britton SL, Koch LG, Rottinghaus GE, de Godoy MRC, Padilla J, Swanson KS, and Vieira-Potter VJ
- Subjects
- Adipose Tissue drug effects, Adipose Tissue metabolism, Adiposity drug effects, Animals, Body Weight drug effects, Endothelium metabolism, Fasting, Female, Gene Expression, Gene Expression Regulation, Plant, Insulin Resistance, Liver metabolism, Ovariectomy, Plant Extracts chemistry, RNA, Messenger genetics, Rats, Triglycerides blood, Vascular Stiffness drug effects, Energy Metabolism drug effects, Gastrointestinal Microbiome drug effects, Heart drug effects, Myocardium metabolism, Plant Extracts pharmacology, Glycine max chemistry
- Abstract
Phytoestrogen-rich soy is known to ameliorate menopause-associated obesity and metabolic dysfunction for reasons that are unclear. The gut microbiota have been linked with the development of obesity and metabolic dysfunction. We aimed to determine the impact of soy on cardiometabolic health, adipose tissue inflammation, and the cecal microbiota in ovariectomized (OVX) rats bred for low-running capacity (LCR), a model that has been previously shown to mimic human menopause compared to sham-operated (SHM) intact control LCR rats. In this study, soy consumption, without affecting energy intake or physical activity, significantly improved insulin sensitivity and body composition of OVX rats bred for low-running capacity. Furthermore, soy significantly improved blood lipid profile, adipose tissue inflammation, and aortic stiffness of LCR rats. Compared to a soy-free control diet, soy significantly shifted the cecal microbial community of LCR rats, resulting in a lower Firmicutes:Bacteroidetes ratio. Correlations among metabolic parameters and cecal bacterial taxa identified in this study suggest that taxa Prevotella, Dorea, and Phascolarctobacterium may be taxa of interest. Our results suggest that dietary soy ameliorates adiposity, insulin sensitivity, adipose tissue inflammation, and arterial stiffness and exerts a beneficial shift in gut microbial communities in a rat model that mimics human menopause.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.