4 results on '"d'Entremont KJN"'
Search Results
2. Northern Gannet foraging trip length increases with colony size and decreases with latitude.
- Author
-
Clark BL, Vigfúsdóttir F, Wanless S, Hamer KC, Bodey TW, Bearhop S, Bennison A, Blackburn J, Cox SL, d'Entremont KJN, Garthe S, Grémillet D, Jessopp M, Lane J, Lescroël A, Montevecchi WA, Pascall DJ, Provost P, Wakefield ED, Warwick-Evans V, Wischnewski S, Wright LJ, and Votier SC
- Abstract
Density-dependent competition for food influences the foraging behaviour and demography of colonial animals, but how this influence varies across a species' latitudinal range is poorly understood. Here we used satellite tracking from 21 Northern Gannet Morus bassanus colonies (39% of colonies worldwide, supporting 73% of the global population) during chick-rearing to test how foraging trip characteristics (distance and duration) covary with colony size (138-60 953 breeding pairs) and latitude across 89% of their latitudinal range (46.81-71.23° N). Tracking data for 1118 individuals showed that foraging trip duration and maximum distance both increased with square-root colony size. Foraging effort also varied between years for the same colony, consistent with a link to environmental variability. Trip duration and maximum distance also decreased with latitude, after controlling for colony size. Our results are consistent with density-dependent reduction in prey availability influencing colony size and reveal reduced competition at the poleward range margin. This provides a mechanism for rapid population growth at northern colonies and, therefore, a poleward shift in response to environmental change. Further work is required to understand when and how colonial animals deplete nearby prey, along with the positive and negative effects of social foraging behaviour., Competing Interests: We declare we have no competing interests., (© 2024 The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. Quantifying inter-annual variability on the space-use of parental Northern Gannets (Morus bassanus) in pursuit of different prey types.
- Author
-
d'Entremont KJN, Pratte I, Gjerdrum C, Wong SNP, and Montevecchi WA
- Subjects
- Animals, Ecosystem, Fishes, Chickens, Morus, Diving
- Abstract
Spatial planning for marine areas of multi-species conservation concern requires in-depth assessment of the distribution of predators and their prey. Northern Gannets Morus bassanus are generalist predators that predate several different forage fishes depending on their availability. In the western North Atlantic, gannets employ different dive tactics while in pursuit of different prey types, performing deep, prolonged U-shaped dives when foraging on capelin (Mallotus villosus), and rapid, shallow, V-shaped dives when foraging on larger pelagic fishes. Therefore, much can be inferred about the distribution and abundance of key forage fishes by assessing the foraging behaviour and space-use of gannets. In this study, we aimed to quantify space-use and to determine areas of suitable foraging habitat for gannets in pursuit of different prey types using habitat suitability models and kernel density utilization distributions. We deployed 25 GPS/Time-depth recorder devices on parental Northern Gannets at Cape St. Mary's, Newfoundland, Canada from 2019 to 2021. To assess the influence of environmental variables on gannets foraging for different prey types, we constructed three different habitat suitability models: a U-shaped dive model, and two V-shaped dive models (early and late chick-rearing). Suitable foraging habitat for capelin, deduced by the U-shaped dive model, was defined by coastal, shallow waters with flat relief and sea surface temperatures (SST) of 11-15° C. Suitable habitat for early V-shaped dives was defined by shallow and coastal waters with steep slope and SST of 12-15°C and ~18°C, likely reflecting the variability in environmental preferences of different prey species captured when performing V-shaped dives. Suitable habitat for late V-shaped dives was defined by shallow coastal waters (<100m depth), as well as waters deeper than 200 m, and by SST greater than 16°C. We show that space-use by gannets can vary both within and between years depending on environmental conditions and the prey they are searching for, with consequences for the extent of potential interaction with anthropogenic activities. Further, we suggest regions defined as suitable for U-shaped dives are likely to be critical habitat of multi-species conservation concern, as these regions are likely to represent consistent capelin spawning habitat., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2023 d’Entremont et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF
4. Bibliometric investigation of the integration of animal personality in conservation contexts.
- Author
-
Collins SM, Hendrix JG, Webber QMR, Boyle SP, Kingdon KA, Blackmore RJ, d'Entremont KJN, Hogg J, Ibáñez JP, Kennah JL, Lamarre J, Mejías M, Newediuk L, Richards C, Schwedak K, Wijekulathilake C, and Turner JW
- Subjects
- Animals, Amphibians, Introduced Species, Climate Change, Mammals, Conservation of Natural Resources methods, Personality
- Abstract
Consistent individual differences in behavior, commonly termed animal personality, are a widespread phenomenon across taxa that have important consequences for fitness, natural selection, and trophic interactions. Animal personality research may prove useful in several conservation contexts, but which contexts remains to be determined. We conducted a structured literature review of 654 studies identified by combining search terms for animal personality and various conservation subfields. We scored the relevance of personality and conservation issues for each study to identify which studies meaningfully integrated the 2 fields as opposed to surface-level connections or vague allusions. We found a taxonomic bias toward mammals (29% of all studies). Very few amphibian or reptile studies applied personality research to conservation issues (6% each). Climate change (21%), invasive species (15%), and captive breeding and reintroduction (13%) were the most abundant conservation subfields that occurred in our search, though a substantial proportion of these papers weakly integrated conservation and animal personality (climate change 54%, invasive species 51%, captive breeding and reintroduction 40%). Based on our results, we recommend that researchers strive for consistent and broadly applicable terminology when describing consistent behavioral differences to minimize confusion and improve the searchability of research. We identify several gaps in the literature that appear to be promising and fruitful avenues for future research, such as disease transmission as a function of sociability or exploration as a driver of space use in protected areas. Practitioners can begin informing future conservation efforts with knowledge gained from animal personality research., (© 2022 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.