1. Multi-Stage Corn Yield Prediction Using High-Resolution UAV Multispectral Data and Machine Learning Models.
- Author
-
Kumar, Chandan, Mubvumba, Partson, Huang, Yanbo, Dhillon, Jagman, and Reddy, Krishna
- Subjects
- *
MACHINE learning , *MULTISPECTRAL imaging , *NORMALIZED difference vegetation index , *STANDARD deviations , *CORN , *CROP management - Abstract
Timely and cost-effective crop yield prediction is vital in crop management decision-making. This study evaluates the efficacy of Unmanned Aerial Vehicle (UAV)-based Vegetation Indices (VIs) coupled with Machine Learning (ML) models for corn (Zea mays) yield prediction at vegetative (V6) and reproductive (R5) growth stages using a limited number of training samples at the farm scale. Four agronomic treatments, namely Austrian Winter Peas (AWP) (Pisum sativum L.) cover crop, biochar, gypsum, and fallow with sixteen replications were applied during the non-growing corn season to assess their impact on the following corn yield. Thirty different variables (i.e., four spectral bands: green, red, red edge, and near-infrared and twenty-six VIs) were derived from UAV multispectral data collected at the V6 and R5 stages to assess their utility in yield prediction. Five different ML algorithms including Linear Regression (LR), k-Nearest Neighbor (KNN), Random Forest (RF), Support Vector Regression (SVR), and Deep Neural Network (DNN) were evaluated in yield prediction. One-year experimental results of different treatments indicated a negligible impact on overall corn yield. Red edge, canopy chlorophyll content index, red edge chlorophyll index, chlorophyll absorption ratio index, green normalized difference vegetation index, green spectral band, and chlorophyll vegetation index were among the most suitable variables in predicting corn yield. The SVR predicted yield for the fallow with a Coefficient of Determination (R2) and Root Mean Square Error (RMSE) of 0.84 and 0.69 Mg/ha at V6 and 0.83 and 1.05 Mg/ha at the R5 stage, respectively. The KNN achieved a higher prediction accuracy for AWP (R2 = 0.69 and RMSE = 1.05 Mg/ha at V6 and 0.64 and 1.13 Mg/ha at R5) and gypsum treatment (R2 = 0.61 and RMSE = 1.49 Mg/ha at V6 and 0.80 and 1.35 Mg/ha at R5). The DNN achieved a higher prediction accuracy for biochar treatment (R2 = 0.71 and RMSE = 1.08 Mg/ha at V6 and 0.74 and 1.27 Mg/ha at R5). For the combined (AWP, biochar, gypsum, and fallow) treatment, the SVR produced the most accurate yield prediction with an R2 and RMSE of 0.36 and 1.48 Mg/ha at V6 and 0.41 and 1.43 Mg/ha at the R5. Overall, the treatment-specific yield prediction was more accurate than the combined treatment. Yield was most accurately predicted for fallow than other treatments regardless of the ML model used. SVR and KNN outperformed other ML models in yield prediction. Yields were predicted with similar accuracy at both growth stages. Thus, this study demonstrated that VIs coupled with ML models can be used in multi-stage corn yield prediction at the farm scale, even with a limited number of training data. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF