Çeşitli radar sistemleri arasında darbe Doppler radar sistemleri, özellikle askeri uygulamalarda en çok kullanılanıdır. Darbe Doppler radar sistemlerinin birincil görevi hedefleri tespit edip, hedeflerin menzil ve radyal hızlarını kestirmektir. Tespit yapabilmek için, yansıyan sinyaller uyumlu süzgeçten geçirilip, darbe Doppler işlemine tabi tutulur. Sonuçta elde edilen mesafe-Doppler matrisi bazı tespit algoritmalarına girdi olarak kullanılır. Hedefleri tespit edebilmek için, Sabit Yanlış Alarm Oranlı (SYAO) algoritmalar mesafe-Doppler matrisi üzerinde koşturulur. Parazit yankı bölgesinde ve bu bölgenin dışında farklı SYAO algoritmaları koşturmak yararlıdır. Çünkü hücre istatistiği parazit yankının içinde ve dışında farklıdır. Bu ayrımı elde edebilmek için öncelikle mesafe-Doppler matrisinde parazit yankının yeri tespit edilmelidir. Gerçekçi arazi modelleri ve hareketli platformlar göz önüne alındığında, parazit yankı sıfır Doppler frekansı etrafında bulunmayabilir. Bu tez çalışmasında, mesafe-Doppler matrisi elemanlarını kullanarak, parazit yankı tespit edilmesine yönelik iki algoritma ve performans analizleri sunulmaktadır. Algoritmalardan birincisi daha yüksek hata oranına ancak daha düşük işlem karmaşıklığına, ikincisi ise daha düşük hata oranına ancak daha yüksek işlem karmaşıklığına sahiptir. Algoritmalar mesafe-Doppler matrisi elemanlarını doğrusal olmayan süzgeçlerden geçirerek parazit yankının konumunu tespit etmektedir. Olasılıksal hata oranı analizlerine ek olarak, bazı gerçekçi durumların benzetim sonuçları da sunulmaktadır. Birinci algoritmanın, düşük işlem karmaşıklığı gerektiren durumlarda, düşük parazit-yankı-gürültü oranı değerleri için kullanılmasının iyi bir seçim olduğu; öte yandan, daha yüksek işlem karmaşıklığına sahip ikinci algoritmanın bütün parazit-yankı-gürültü oranları için daha iyi performansa sahip olduğu gözlenmektedir. Among various types of radar systems, the pulse-Doppler radar is the most widely used one, especially in military applications. Pulse Doppler radars have a primary objective to detect and estimate the range and the radial velocity of the targets. In order to have a basis for the detection, first reflected echo signals are matched filtered and then the time-alligned pulse returns are transformed to the Fourier domain to obtain the range-Doppler matrix. The resulting range-Doppler matrix is input to target detection algorithms. For this purpose, constant false alarm rate (CFAR) algorithms are run on the range-Doppler matrix. It is useful to run different CFAR algorithms inside the clutter region and outside the clutter region because the statistics are different inside and outside of the clutter. In order to achieve this discrimination, the position of the clutter has to be detected in the range-Doppler matrix. Moreover, the clutter may not always appear around zero Doppler frequency when realistic terrain models and moving platforms are considered. Two algorithms for clutter detection using range-Doppler matrix elements are investigated and their performance analysis is presented in this thesis. The first algorithm has higher error rates but lower computational complexity, whereas, the second one has lower error rates but higher computational complexity. Both algorithms detect clutter position by filtering the range-Doppler matrix elements via non-linear filters. In addition to the probabilistic error rate analysis, simulation results on some realistic cases are presented. It is concluded that the first algorithm is a good choice for low clutter-to-noise ratio values when a low-complexity algorithm is required. On the other hand, the second algorithm has better performance in all clutter-to-noise ratio values but it requires more computational power. 80