1. A Novel Two Variables PID Control Algorithm in Precision Clock Disciplining System.
- Author
-
Miao, Xinyu, Hu, Changjun, and Qiao, Yaojun
- Subjects
KALMAN filtering ,GLOBAL Positioning System ,FREQUENCY stability ,INTERNET of things ,TIME management - Abstract
Proportion Integration Differentiation (PID) is a common clock disciplining algorithm. In satellite clock source equipment and in Internet of Things (IoT) sensor nodes it is usually required that both time and frequency signals have high accuracy. Because the traditional PID clock disciplining method used in the equipment only performs PID calculation and feedback control on single variable, such as frequency, the time accuracy error of the clock source is large and even has inherent deviation. By using the integral relationship between frequency and time, a new two variables PID control algorithm for high-precision clock disciplining is proposed in this paper. Time is taken as the constraint variable to make the time deviation converge. It can guarantee a high accuracy of time and high long-term stability of frequency. At the same time, frequency is taken as the feedback variable to make frequency obtain fast convergence. It can ensure high short-term stability of the frequency and the continuity of time. So, it can make the time and frequency of the disciplined clock have high accuracy and stability at the same time. In order to verify the effectiveness of the proposed algorithm, it is simulated based on the GNSS disciplined clock model. The GNSS time after Kalman filtering is used as the time reference to discipline the local clock. The simulation results show that the time deviation range of a local clock after convergence is −0.38 ns∼0.31 ns, the frequency accuracy is better than 1 × 10 − 15 averaging over one day, and the long-term time stability (TDEV) for a day is about 7 ps when using the two variables PID algorithm. Compared with the single variable PID algorithm, the time accuracy of the two variables PID algorithm is improved by about one order of magnitude and the long-term time stability (TDEV) is improved by about two orders of magnitude. The research results indicate that the two variables PID control algorithm has great application potential for the development of clock source equipment and other bivariate disciplining scenarios. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF