32 results on '"chiral-at-metal"'
Search Results
2. SPOs as Non‐Innocent Ligands in Chiral‐at‐Iridium Catalyzed Asymmetric Hydrogenations.
- Author
-
Pazos, Ariadna and Freixa, Zoraida
- Subjects
- *
TRANSFER hydrogenation , *ASYMMETRIC synthesis , *BIFUNCTIONAL catalysis , *PHOSPHINE oxides , *LIGANDS (Chemistry) , *HYDROGENATION - Abstract
A series of bis‐cyclometalated chiral‐at‐metal iridium(III) complexes containing a coordinated secondary phosphine oxide (SPO) have been synthesized and evaluated as catalysts in the asymmetric transfer hydrogenation (ATH) of acetophenone. The catalytic results show that SPO ligands have a non‐innocent role in activating the catalytic process. Additionally, it has been observed that for the same chiral descriptor (Δ‐at‐Ir or Λ‐at‐Ir), the major enantiomer formed depends on the nature of the cyclometalating ligand. These enantiodivergent results contravene the general assumption that the chiral‐at‐metal core's chirality dictates the sense of the chiral induction. A combined analysis of the main structural features of the catalysts deduced from XRD structures and in situ NMR spectroscopy allowed us to propose a simplified catalytic cycle and a working hypothesis to explain the observed enantioselectivities. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Stereocontrol of Metal‐Centred Chirality in Rhodium(III) and Ruthenium(II) Complexes with N2N'P Ligand.
- Author
-
Barriendos, Irati, Almárcegui, Íber, Carmona, María, Tejero, Alvaro G., Soriano‐Jarabo, Alejandro, Blas, Carlota, Aguado, Zulima, Carmona, Daniel, Lahoz, Fernando J., García‐Orduña, Pilar, Viguri, Fernando, and Rodríguez, Ricardo
- Subjects
- *
RHODIUM , *RUTHENIUM compounds , *HIGH temperatures , *RUTHENIUM , *PYRIDINE , *LIGANDS (Chemistry) - Abstract
Rh(III) and Ru(II) complexes, [RhCl2(κ4‐N2N'P‐L)][SbF6] (1) and [RuCl2(κ4‐N2N'P‐L)] (2), were synthesised using the tetradentate ligand L (L=N,N‐bis[(pyridin‐2‐yl)methyl]‐[2‐(diphenylphosphino)phenyl]methanamine). In each case only one diastereomer is detected, featuring cis‐disposed pyridine groups. The chloride ligand trans to pyridine can be selectively abstracted by AgSbF6, with the ruthenium complex (2) reacting more readily at room temperature compared to the rhodium complex (1) which requires elevated temperatures. Rhodium complexes avoid the second chloride abstraction, whereas ruthenium complexes can form the chiral bisacetonitrile complex [Ru(κ4‐N2N'P‐L)(NCMe)2][SbF6]2 (5) upon corresponding treatment with AgSbF6. The complex [RhCl2(κ4‐N2N'P‐L)][SbF6] (1) has also been used to synthesise polymetallic species, such as the tetrametallic complex [{RhCl2(κ4‐N2N'P‐L)}2(μ‐Ag)2][SbF6]4 (6) which was formed with complete diastereoselectivity and chiral molecular self‐recognition. In addition, a stable bimetallic mixed‐valence complex [{Rh(κ4‐N2N'P‐L)}{Rh(COD)}(μ‐Cl)2][SbF6]2 (7) (COD=cyclooctadiene) was synthesised. These results highlight the significant differences in chloride lability between Rh3+ and Ru2+ complexes and demonstrate the potential for complexes to act as catalyst precursors and ligands in further chemistry applications. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Nitrene‐Mediated Enantioselective Intramolecular Olefin Oxyamination to Access Chiral γ‐Aminomethyl‐γ‐Lactones.
- Author
-
Nie, Xin, Ritter, Clayton W., Hemming, Marcel, Ivlev, Sergei I., Xie, Xiulan, Chen, Shuming, and Meggers, Eric
- Subjects
- *
ALKENES , *AMINES , *CATALYSTS , *HETEROCYCLIC compounds , *NITRENES - Abstract
Attaching a nitrene precursor to an intramolecular nucleophile allows for a catalytic asymmetric intramolecular oxyamination of alkenes in which the nucleophile adds in an endocyclic position and the amine in an exocyclic fashion. Using chiral‐at‐ruthenium catalysts, chiral γ‐aminomethyl‐γ‐lactones containing a quaternary carbon in γ‐position are provided in high yields (up to 99 %) and with excellent enantioselectivities (up to 99 % ee). DFT calculations support the possibility of both a singlet (concerted oxyamination of the alkene) and triplet pathway (stepwise oxyamination) for the formation of the predominant stereoisomer. γ‐Aminomethyl‐γ‐lactones are versatile chiral building blocks and can be converted to other heterocycles such as δ‐lactams, 2‐oxazolidinones, and tetrahydrofurans. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
5. Dynamic kinetic resolution of an azlactone catalyzed by octahedral chiral-at-metal cobalt(III) complexes under phase-transfer alcoholysis.
- Author
-
Emelyanov, Mikhail A., Rozhkov, Evgeniy V., Maleev, Victor I., and Larionov, Vladimir A.
- Subjects
- *
KINETIC resolution , *ALCOHOLYSIS , *COBALT , *AQUEOUS solutions - Abstract
[Display omitted] A family of well-defined octahedral cationic chiral-at- cobalt(III) catalysts based on (R , R)-1,2-cyclohexanediamine and (R , R)-1,2-diphenylethylenediamine has been examined in the dynamic kinetic resolution of an azlactone derived from N -benzoyl- tert -leucine. The reactions catalyzed by 10 mol% of CoIII complexes in the presence of 1 M aqueous NaOH solution under phase-transfer alcoholysis afforded the corresponding benzyl ester of tert -leucine with up to 76% yield and up to 66% enantioselectivity (ee). [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
6. Chiral-at-Ru Catalyst with Cyclometalated Imidazo[1,5- a ]pyridin-ylidene for Enantioselective Intramolecular Cyclopropanations.
- Author
-
Han, Feng, Xie, Yuanhao, Xie, Xiulan, Ivlev, Sergei I., and Meggers, Eric
- Subjects
- *
TRANSFER hydrogenation , *CYCLOPROPANATION , *CATALYSTS , *NORMAL-phase chromatography , *CHIRAL stationary phases - Abstract
The coordination of a second bidentate ligand, a 4-mesityl-2-(pyridin-2-yl)thiazole ligand, generates a stereogenic ruthenium center with or metal-centered configuration. Ru-N1 = 2.047 Å) which is caused by the I trans i effect [41] of the strongly -donating Ru-C bond which thereby labilizes the acetonitrile ligand in I trans i position. Keywords: cyclometalation; imidazo[1,5- a ]pyridinylidene; chiral-at-metal; stereogenic metal; ruthenium; asymmetric catalysis; cyclopropanation EN cyclometalation imidazo[1,5- a ]pyridinylidene chiral-at-metal stereogenic metal ruthenium asymmetric catalysis cyclopropanation 1403 1408 6 07/11/23 20230725 NES 230725 Graph Cyclometalated complexes contain a chelate ligand including at least one metal-carbon -bond. It contains a cyclometalated I N i -(3-nitrophenyl)-imidazo[1,5- I a i ]pyridinylidene ligand in addition to a bidentate 4-mesityl-2-(pyridin-2-yl)thiazole ligand and two monodentate acetonitrile ligands coordinated in an octahedral fashion to provide a monocationic complex with a tetrafluoroborate counterion (Figure 1). [Extracted from the article]
- Published
- 2023
- Full Text
- View/download PDF
7. Decision Trees for the Recognition of Metal-Centered Chirality in Coordination Complexes.
- Author
-
Munguba GHL, da Silva MF, Silva FT, Urquiza-Carvalho GA, and Simas AM
- Abstract
While established guidelines exist for chirality in tetrahedral molecules, there is a notable absence of clear rules for recognizing metal-centered chirality in higher-coordination complexes. We develop decision trees to assess the likelihood of chirality-at-metal in coordination complexes with coordination numbers 4-9 with mono and bidentate ligands. Using binary decision rules based on shape, ligand type, and quantity, the trees classify complexes as chiral or achiral. The theoretical formalism employs stereoisomer enumeration via Pólya's theorem, assuming ideal geometries and cis coordination of bidentate ligands. Additionally, analysis of over 2700 crystallographic structures reveals a high prevalence of metal-centered chirality, especially in complexes with higher coordination numbers. These powerful yet easy-to-use decision trees provide chemists with deeper insights into the stereochemistry of metal coordination complexes and with effective tools to identify and understand this often-overlooked stereochemical property and its impact on molecular interactions and crystal packing., (© 2025 Wiley Periodicals LLC.)
- Published
- 2025
- Full Text
- View/download PDF
8. New anionic cobalt(III) complexes enable enantioselective synthesis of spiro-fused oxazoline and iodoacetal derivatives
- Author
-
Mohamed S. H. Salem and Shinobu Takizawa
- Subjects
cobalt(III) complexes ,phase-transfer catalyst ,iodoacetalization ,iodocyclization ,enantioselective synthesis ,chiral-at-metal ,Chemistry ,QD1-999 - Abstract
Anionic salicylimine-based cobalt (III) complexes featuring chiral ligands derived from isoleucine amino acids were used as efficient bifunctional phase-transfer catalysts for electrophilic iodination of enol ethers. The Brønsted acids of these complexes enabled the enantioselective asymmetric iodocyclization of enol ethers, furnishing spiro-fused oxazoline derivatives in high yields with up to 90:10 er. In addition, chiral cobalt (III) complexes catalyze the asymmetric intermolecular iodoacetalization of enol ethers with various alcohols to afford 3-iodoacetal derivatives in high yields with up to 92:8 er.
- Published
- 2022
- Full Text
- View/download PDF
9. Chiral‐at‐Iron Catalyst for Highly Enantioselective and Diastereoselective Hetero‐Diels‐Alder Reaction.
- Author
-
Hong, Yubiao, Cui, Tianjiao, Ivlev, Sergei, Xie, Xiulan, and Meggers, Eric
- Subjects
- *
ASYMMETRIC synthesis , *DERACEMIZATION , *CATALYSTS , *ENOL ethers , *ENOLS , *STERIC hindrance , *DIELS-Alder reaction , *CARBENE synthesis - Abstract
This study demonstrates that chiral‐at‐iron complexes, in which all coordinated ligands are achiral and the overall chirality the consequence of a stereogenic iron center, are capable of catalyzing asymmetric transformations with very high enantioselectivities. The catalyst is based on a previously reported design (J. Am. Chem. Soc. 2017, 139, 4322), in which iron(II) is surrounded by two configurationally inert achiral bidentate N‐(2‐pyridyl)‐substituted N‐heterocyclic carbenes in a C2‐symmetric fashion and complemented by two labile acetonitriles. By replacing mesityl with more bulky 2,6‐diisopropylphenyl substituents at the NHC ligands, the steric hindrance at the catalytic site was increased, thereby providing a markedly improved asymmetric induction. The new chiral‐at‐iron catalyst was applied to the inverse electron demand hetero‐Diels‐Alder reaction between β,γ‐unsaturated α‐ketoester and enol ethers provide 3,4‐dihydro‐2H‐pyrans in high yields with excellent diastereoselectivities (up to 99 : 1 dr) and excellent enantioselectivities (up to 98 % ee). Other electron rich dienophiles are also suitable as demonstrated for a reaction with a vinyl azide. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
10. Catalytic enantioselective synthesis of β-amino alcohols by nitrene insertion.
- Author
-
Zhou, Zijun, Tan, Yuqi, Shen, Xiang, Ivlev, Sergei, and Meggers, Eric
- Abstract
Chiral β-amino alcohols are important building blocks for the synthesis of drugs, natural products, chiral auxiliaries, chiral ligands and chiral organocatalysts. The catalytic asymmetric β-amination of alcohols offers a direct strategy to access this class of molecules. Herein, we report a general intramolecular C(sp
3 )-H nitrene insertion method for the synthesis of chiral oxazolidin-2-ones as precursors of chiral β-amino alcohols. Specifically, the ring-closing C(sp3 )-H amination of N-benzoyloxycarbamates with 2 mol% of a chiral ruthenium catalyst provides cyclic carbamates in up to 99% yield and with up to 99% ee. The method is applicable to benzylic, allylic, and propargylic C-H bonds and can even be applied to completely non-activated C (sp3 )-H bonds, although with somewhat reduced yields and stereoselectivities. The obtained cyclic carbamates can subsequently be hydrolyzed to obtain chiral β-amino alcohols. The method is very practical as the catalyst can be easily synthesized on a gram scale and can be recycled after the reaction for further use. The synthetic value of the new method is demonstrated with the asymmetric synthesis of a chiral oxazolidin-2-one as intermediate for the synthesis of the natural product aurantioclavine and chiral β-amino alcohols that are intermediates for the synthesis of chiral amino acids, indane-derived chiral Box-ligands, and the natural products dihydrohamacanthin A and dragmacidin A. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
11. Synthesis and Systematic Structural Analysis of Cationic Half‐Sandwich Ruthenium Chalcogenocarbonyl Complexes.
- Author
-
Suzuki, Ayumi, Mutoh, Yuichiro, Tsuchida, Noriko, Fung, Chi‐Wai, Kikkawa, Shoko, Azumaya, Isao, and Saito, Shinichi
- Subjects
- *
RUTHENIUM , *TRANSITION metals , *COMPLEX compounds , *X-ray diffraction , *LIGANDS (Chemistry) - Abstract
Although the chemistry of transition‐metal complexes with carbonyl (CO) and thiocarbonyl (CS) ligands has been well developed, their heavier analogues, namely selenocarbonyl (CSe) and tellurocarbonyl (CTe) complexes remain scarce. The limited availability of such CSe and CTe complexes has so far hampered our understanding of the differences between such chalcogenocarbonyl (CE: E=O, S, Se, Te) ligands. Herein, we report the synthesis and properties of a series of cationic half‐sandwich ruthenium CE complexes of the type [CpRu(CE)(H2IMes)(CNCH2Ts)][BArF4] (Cp=η5‐C5H5−; H2IMes=1,3‐dimesitylimidazolin‐2‐ylidene; ArF=3,5‐(CF3)2C6H3). A combination of X‐ray diffraction analyses, NMR spectroscopic analyses, and DFT calculations revealed an increasing π‐accepting ability of the CE ligands in the order O
- Published
- 2020
- Full Text
- View/download PDF
12. Chiral-at-iron compounds with phosphanes.
- Author
-
Feliz, Marta and Estevan, Francisco
- Subjects
- *
PHOSPHINES , *DERACEMIZATION , *IRON compounds , *IRON , *CRUST of the earth , *CHELATION , *ASYMMETRIC synthesis , *LIGANDS (Chemistry) - Abstract
[Display omitted] • Chelation of chiral or achiral phosphanes often induces a stereogenic iron. • X-ray diffraction and NMR data support the structure of the iron configurations. • Chiral-at-iron phosphane compounds are potential enantioselective catalysts. The design of chiral iron compounds is one of the main current research lines in the field of asymmetric synthesis and catalysis due to the low price, high abundance in the earth's crust, and low toxicity of iron. Because of the interesting electronic and structural properties of phosphanes and their stereochemical rigidity, combining iron with optically pure phosphanes is promising. It has been recently applied in asymmetric transformations. However, the development of chiral iron compounds with achiral phosphanes, which bear the iron atom as the only stereocenter, has been mainly focused on their synthesis and characterization. Although there is a long history and diversity of chemical strategies for the preparation of these chiral-at-iron compounds, in most cases, the stereochemistry (including chirality at metal) of the iron compounds has not been studied in detail, and there is a lack of rational design for targeted chiral compounds and structural analysis. In this review, a description of the synthetic strategies and structure of chiral-at-iron compounds bearing symmetric or asymmetric phosphanes is presented. The structure of the iron compounds is analyzed based on NMR and X-ray diffraction results, with special emphasis on their configurational analysis based on the denticity and hapticity of phosphane ligands, chelate rings and conformations, and the additional donor atoms present in such phosphanes. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
13. Bis‐Cyclometalated Indazole Chiral‐at‐Rhodium Catalyst for Asymmetric Photoredox Cyanoalkylations.
- Author
-
Steinlandt, Philipp S., Zuo, Wei, Harms, Klaus, and Meggers, Eric
- Subjects
- *
ACID catalysts , *CATALYSTS , *RADICALS (Chemistry) , *LEWIS acids , *ACETONITRILE , *ASYMMETRIC synthesis , *NITROALDOL reactions - Abstract
A new class of bis‐cyclometalated rhodium(III) catalysts containing two inert cyclometalated 6‐tert‐butyl‐2‐phenyl‐2H‐indazole ligands and two labile acetonitriles is introduced. Single enantiomers (>99 % ee) were obtained through a chiral‐auxiliary‐mediated approach using a monofluorinated salicyloxazoline. The new chiral‐at‐metal complex is capable of catalyzing the visible‐light‐induced enantioselective α‐cyanoalkylation of 2‐acyl imidazoles in which it serves a dual function as the chiral Lewis acid catalyst for the asymmetric radical chemistry and at the same time as the photoredox catalyst for the visible‐light‐induced redox chemistry (up to 80 % yield, 4:1 d.r. and 95 % ee, 12 examples). [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
14. Enantioconvergent photoredox radical-radical coupling catalyzed by a chiral-at-rhodium complex.
- Author
-
Zhou, Zijun, Nie, Xin, Harms, Klaus, Riedel, Radostan, Zhang, Lilu, and Meggers, Eric
- Abstract
Racemic α-chloro imidazol-2-yl-ketones undergo an enantioconvergent photoactivated C–C bond formation with N-aryl glycines catalyzed by a single bis-cyclometalated chiral-at-rhodium catalyst in yields of up to 80% and up to 98% enantiomeric excess (ee). Control experiments support a mechanism which is initiated by a single electron transfer from N-aryl glycinate to the photochemically excited rhodium-bound α-chloro imidazol-2-yl-ketone, followed by chloride fragmentation of the α-chloroketone, decarboxylation of the glycinate, and a subsequent highly stereocontrolled radical-radical coupling. This work showcases the ability of the chiral rhodium catalyst to serve a dual function as chiral Lewis acid and at the same time as the photoredox active species upon substrate binding. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
15. Bis-Cyclometalated Indazole and Benzimidazole Chiral-at-Iridium Complexes: Synthesis and Asymmetric Catalysis
- Author
-
Sebastian Brunen, Yvonne Grell, Philipp S. Steinlandt, Klaus Harms, and Eric Meggers
- Subjects
cyclometalation ,chiral-at-metal ,asymmetric catalysis ,Organic chemistry ,QD241-441 - Abstract
A new class of bis-cyclometalated iridium(III) catalysts containing two inert cyclometalated 6-tert-butyl-2-phenyl-2H-indazole bidentate ligands or two inert cyclometalated 5-tert-butyl-1-methyl-2-phenylbenzimidazoles is introduced. The coordination sphere is complemented by two labile acetonitriles, and a hexafluorophosphate ion serves as a counterion for the monocationic complexes. Single enantiomers of the chiral-at-iridium complexes (>99% er) are obtained through a chiral-auxiliary-mediated approach using a monofluorinated salicyloxazoline and are investigated as catalysts in the enantioselective conjugate addition of indole to an α,β-unsaturated 2-acyl imidazole and an asymmetric Nazarov cyclization.
- Published
- 2021
- Full Text
- View/download PDF
16. Design and Synthesis of Tris-Heteroleptic Bis-Cyclometalated Chiral-at-Rhodium Catalysts for Application in Asymmetric Catalysis
- Author
-
Grell, Yvonne and Meggers, Eric (Prof. Dr.)
- Subjects
Chemistry & allied sciences ,stereogenic metal ,Chemie ,C1-Symmetrie ,non-C2-symmetry ,alpha-Fluorierung ,2+2 photocycloadditions ,Asymmetrische Katalyse ,alpha-fluorination ,Asymmetric catalysis ,chiral-at-metal ,Rhodium ,oktaedrische Metallkomplexe ,alpha-chlorination ,Metall-zentrierte Chiralität ,rhodium ,2+2 Photocycloadditionen ,alpha-Halogenierungen ,ddc:540 - Abstract
Chiral transition metal complexes represent a powerful class of catalysts for the asymmetric synthesis of optically active compounds. In recent years, Meggers and co-workers introduced a new class of iridium(III)- and rhodium(III)-based Lewis acid catalysts, in which the overall chirality exclusively originates from a stereogenic metal center, with all coordinating ligands being achiral. This thesis provides a synthetic approach to a previously elusive class of tris-heteroleptic bis-cyclometalated chiral-at-rhodium(III) complexes and demonstrates their application as chiral catalysts in asymmetric catalysis. Chapter 3.1 and 3.2. A method for the synthesis of a bis-cyclometalated rhodium complex containing two different cyclometalating ligands is developed. Preparation of this previously inaccessible family of tris-heteroleptic bis-cyclometalated rhodium catalysts was accomplished by a stepwise protocol that relies on the formation of an isolable mono-cyclometalated rhodium(III) species in the first step, which provided the opportunity to introduce a different second ligand in a subsequent second cyclometalation step. Resolution of the racemic complex into its individual lambda- and delta-enantiomers was achieved using an established chiral auxiliary-mediated approach. The final chiral-at-metal rhodium complex contains a cyclometalated 5-tert-butyl-1-methyl-2-phenylbenzimidazole, a cyclometalated 5-tert-butyl-2-phenylbenzothiazole, and two labile acetonitrile ligands, complemented by a hexafluorophosphate counterion, and was demonstrated to be a highly efficient catalyst for asymmetric [2+2] photocycloadditions. Chapter 3.3. An application of chiral bis(oxazoline) ligands as C2-symmetric chiral auxiliaries for the synthesis of enantiopure bis-cyclometalated rhodium(III) complexes is described. Bis(oxazolines) are versatile chiral ligands for asymmetric catalysis, but have not been used for the resolution of racemic mixtures of transition metal complexes. Due to their C2-symmetry, chiral bis(oxazolines) are particularly useful for the synthesis of nonracemic transition metal complexes with lower symmetry and this is demonstrated for the synthesis of an enantiomerically pure rhodium(III) complex containing two different cyclometalated ligands. Chapter 3.4. The developed synthetic method for the preparation of bis-cyclometalated rhodium(III) complexes with two different cyclometalating ligands was further improved and the modularity of the procedure demonstrated by the addition of two new catalyst derivatives which, in addition to a cyclometalated 5-tert-butyl-1-methyl-2-phenylbenzimidazole, contained a cyclometalated 3,5-diphenyl-1H-pyrazole or a sterically more demanding 1-mesityl-3,5-diphenyl-1H-pyrazole ligand. Both catalysts were readily accessible in an enantiomerically pure fashion (>99% ee) via the previously established chiral bis(oxazoline) mediated strategy. Chapter 3.5. A non-C2-symmetric and sterically demanding chiral-at-rhodium(III) catalyst is demonstrated to efficiently catalyze the highly enantioselective alpha-fluorination (12 examples, up to >99% ee) and alpha-chlorination (12 examples, up to 98% ee) of N-acyl pyrazoles in high yields. Comparison of the catalytic performance with related C2-symmetric rhodium catalysts revealed the clear superiority of the non-C2-symmetric design for the presented alpha-halogenation reactions, which are generally featured by a very simple synthetic protocol. Conversion of the alpha-halogenated products into the corresponding esters with almost no epimerization was achieved and allowed the synthesis of valuable chiral compounds for subsequent chemical transformations.
- Published
- 2022
- Full Text
- View/download PDF
17. Asymmetric catalysis with octahedral stereogenic-at-metal complexes featuring chiral ligands.
- Author
-
Cruchter, Thomas and Larionov, Vladimir A.
- Subjects
- *
METAL complexes , *LIGANDS (Chemistry) , *LEWIS acids , *HYDROGEN bonding , *STEREOCHEMISTRY , *ISOMERS - Abstract
Highlights • Review topic: Octahedral stereogenic-at-metal complexes featuring chiral ligands. • We demonstrate that such complexes serve as capable platforms for chiral catalysts. • They operate as Lewis acid, as Brønsted acid, and as hydrogen-bonding catalysts. Abstract The synthesis and the design of octahedral stereogenic-at-metal complexes featuring chiral ligands and their application as chiral catalysts in various asymmetric reactions are highlighted and discussed in the present review article. Owing to their ligand-located stereogenic elements, such complexes are conveniently accessible stereochemically-defined as Λ- and/or Δ-configured diastereomers, which can be viewed as ‘pseudoenantiomers’ when one primarily focuses on the stereogenic arrangement of multidentate ligands around the metal center. Their convenient synthesis poses a practical advantage over octahedral stereogenic- only -at-metal complexes, where the synthesis of the according Λ- and/or Δ-configured isomers, which are consequentially ‘true enantiomers’, is often somewhat cumbersome. However, octahedral stereogenic-at-metal complexes featuring chiral ligands offer the same favorable scaffold for the design of asymmetric catalysts as related octahedral stereogenic- only -at-metal complexes, namely a chiral, propeller-shaped arrangement of bidentate or tridentate ligands around a stereogenic octahedral metal center. These attractive features are the reason why we focus in the present review on the, from our perspective, highly capable and promising class of octahedral stereogenic-at-metal catalysts featuring chiral ligands. In the following paragraphs, we will discuss recent examples of such catalysts, which have so far been utilized as chiral Lewis acid catalysts, as chiral Brønsted acid catalysts, and as chiral hydrogen-bonding catalysts in various asymmetric reactions. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
18. Asymmetric Nazarov Cyclizations Catalyzed by Chiral‐at‐Metal Complexes.
- Author
-
Mietke, Thomas, Cruchter, Thomas, Larionov, Vladimir A., Faber, Tabea, Harms, Klaus, and Meggers, Eric
- Subjects
- *
RING formation (Chemistry) , *CHIRALITY , *METAL complexes , *IRIDIUM , *RHODIUM - Abstract
Abstract: The application of Lewis acidic chiral‐at‐metal complexes of iridium(III) and rhodium(III) as catalysts for the asymmetric polarized Nazarov cyclization of dihydropyran‐ and indole‐functionalized α‐unsaturated β‐ketoesters is reported (overall 24 examples). For both substrate classes, catalyst loadings of 2 mol% were found to be sufficient for achieving high yields and high stereoselectivities. The cyclized dihydropyran products were isolated in 85–98% yield, with 89%–>99% ee, and trans/cis ratios of 15:1–50:1 (9 examples). The cyclized indole products were typically isolated in more than 70% yield and in up to 93% yield, typically with more than 90% ee and in up to 97% ee, and trans/cis ratios of 12:1–28:1 (15 examples). [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
19. Chiral-at-Metal Complexes as Asymmetric Catalysts
- Author
-
Fontecave, Marc, Hamelin, Olivier, Ménage, Stéphane, Lemaire, Marc, editor, and Mangeney, Pierre, editor
- Published
- 2005
- Full Text
- View/download PDF
20. Synthesis and Design of Stereogenic-at-Metal Complexes and their Applications in Asymmetric Catalysis
- Author
-
Mietke, Thomas, https://orcid.org/0000-0002-6247-1663, and Meggers, Eric (Prof. Dr.)
- Subjects
Benzoxazol ,Chemie ,asymmetric catalysis ,benzothiazole ,Metallzentrierte Chiralität ,iridium ,palladium ,Asymmetrische Katalyse ,Kreuzkupplung ,stereogenic-at-metal ,Metallorganische Chemie ,benzoxazole ,metal organic chemistry ,ddc:540 ,cross-coupling ,Benzothiazol ,Iridium ,chiral-at-metal ,Palladium ,Chemistry & allied sciences - Abstract
Teil 1: Kreuzkupplungsreaktionen in der Ligandensphäre von Iridium(III) Komplexen Eine unkomplizierte Methode zur Modifikation von diastereomeren reinen Benzoxazol- und Benzthiazol-Iridium(III)-Komplexen im Anschluss zur Komplexierung wurde entwickelt. Triflat- und bromfunktionalisierte Iridium(III)-Dimer-Komplexe (sieben Beispiele mit bis zu 89% Ausbeute), wurden mit Hilfe von einfach zugänglichen, chiralen Salicyloxazolin und Salicylthiazolin Hilfsliganden zu den korrespondierenden Diastereomer-Komplexen umgesetzt (Elf Beispiele mit bis zu 40% Ausbeute pro Diastereomer). Die als Diastereomerengemisch erhaltenen Komplexe wurden säulenchromatografisch getrennt und im Anschluss durch SUZUKI-Kreuzkupplung modifiziert (18 Beispiele mit bis zu 94% Ausbeute). Unter Zuhilfenahme von CD Spektroskopie und HPLC Analyse wurde ermittelt, dass die Kreuzkupplungsreaktionen an den Iridium(III)-Komplexen unter erhalt der metallzentrierten Chiralität ablaufen. Dies ermöglicht die Synthese von enantiomerenreinen Komplexen, die mit vorherigen Methoden nur schwer zugänglich waren. Die vorgestellte Strategie erweitert bisherige Synthesemethoden zur Herstellung von nicht racemischen Iridium(III)-Komplexen mit Anwendungen in Gebieten wie: Life Sciences, Material-Wissenschaft und Katalyse z. B. „Synthese eines an der Festphase immobilisierten Katalysators mit metallzentrierter Chiralität.“ Teil 2: Asymmetrische Nazarov Cyclisierung Die Anwendung von LEWIS sauren Iridium(III)- und Rhodium(III)-Komplexen mit metallzentrierter Chiralität als Katalysatoren für die asymmetrische, polarisierte NAZAROV- Cyclisierung von 3,4-Dihydropyran‐ und Indol-funktionalisierten α‐ungesättigten β‐Ketoestern wurde entwickelt (24 Beispiele). Bereits mit 2.0 mol% Katalysatorladung konnten hohe Ausbeuten und hohe Enantioselektivität erreicht werden. Die cyclisierten 3,4-Dihydropyran-Produkte wurden mit Ausbeuten von 85%→98%, einem ee von 89%→99% sowie einem trans/cis-Verhältnis von 15:1–50:1 isoliert (neun Beispiele), Indol-Produkte wurden mit Ausbeuten über 70%, einem ee von bis zu 97% sowie einem trans/cis-Verhältnis von 12:1→28:1 isoliert (15 Beispiele). Im Fall der Indol-Substrate, wurde eine starke Lösungsmittelabhängigkeit zu Hexafluoro-iso-propanol festgestellt., Part 1: Post Complexation Cross-Coupling Reactions A straight forward method for post-complexation derivatizations of diastereomerically pure bis-cyclometalated benzoxazole and benzothiazole iridium(III) complexes was developed. Triflate- and bromide-functionalized iridium(III) complex dimers (seven examples, up to 89% yield), were converted to the corresponding diastereomeric complexes (eleven examples up to 40% yield for each diastereomer), using readily available chiral salicyloxazolines and salicylthiazolines as ancillary ligands. The diastereomer complexes, formed as mixtures of diastereomers, were then resolved by flash chromatography and the diastereomerically pure complexes subjected to SUZUKI cross-coupling reactions (18 examples up to 94% yield). Using CD spectroscopy and HPLC analysis it was evaluated that the post-complexation cross-coupling reactions proceed without affecting the metal-located stereocenter and hence provide post-complexation derivatized non-racemic iridium(III) complexes, which were not easily accessible with previous methods. This strategy expands the toolbox to access functionalized non-racemic iridium(III) complexes for diverse applications in life sciences, materials sciences, and catalysis i.e.: “Synthesis of a stereogenic-at-metal catalyst immobilized on solid support.” Part 2: Asymmetric Nazarov Cyclization Reactions The application of LEWIS acidic stereogenic‐at‐metal complexes of iridium(III) and rhodium(III) as catalysts for the asymmetric polarized NAZAROV cyclization of 3,4-dihydropyran‐ and indole‐functionalized α‐unsaturated β‐ketoesters was developed (overall 24 examples). For both substrate classes, catalyst loadings of 2.0 mol% were found to be sufficient for achieving high yields and high stereoselectivities. The cyclized 3,4-dihydropyran products were isolated in 85→98% yield, with 89%→99% ee, and trans/cis ratios of 15:1→50:1 (nine examples). The cyclized indole products were isolated in more than 70% yield, up to 97% ee, and trans/cis ratios of 12:1→28:1 (15 examples). In case of the indole substrates, a strong solvent dependence on hexafluoro-iso-propanol was observed.
- Published
- 2021
- Full Text
- View/download PDF
21. Asymmetric Synthesis of Hydrocarbazoles Catalyzed by an Octahedral Chiral-at-Rhodium Lewis Acid.
- Author
-
Huang, Yong, Song, Liangliang, Gong, Lei, and Meggers, Eric
- Subjects
- *
ASYMMETRIC synthesis , *RHODIUM catalysts , *CHIRALITY , *METAL complexes , *CARBAZOLE , *LEWIS acids - Abstract
A bis-cyclometalated chiral-at-metal rhodium complex catalyzes the Diels-Alder reaction between N-Boc-protected 3-vinylindoles (Boc=tert-butyloxycarbonyl) and β-carboxylic ester-substituted α,β-unsaturated 2-acyl imidazoles with good-to-excellent regioselectivity (up to 99:1) and excellent diastereoselectivity (>50:1 d.r.) as well as enantioselectivity (92-99% ee) under optimized conditions. The rhodium catalyst serves as a chiral Lewis acid to activate the 2- acyl imidazole dienophile by two-point binding and overrules the preferred regioselectivity of the uncatalyzed reaction. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
22. Octahedral Chiral-at-Metal Iridium Catalysts: Versatile Chiral Lewis Acids for Asymmetric Conjugate Additions.
- Author
-
Shen, Xiaodong, Huo, Haohua, Wang, Chuanyong, Zhang, Bo, Harms, Klaus, and Meggers, Eric
- Subjects
- *
IRIDIUM alloys , *POLYMER aggregates , *RADIOENZYMATIC assays , *CATALYMETRIC titration , *CHEMICAL inhibitors , *IRIDIUM catalysts , *ACID-base chemistry - Abstract
Octahedral iridium(III) complexes containing two bidentate cyclometalating 5- tert-butyl-2-phenylbenzoxazole ( IrO) or 5- tert-butyl-2-phenylbenzothiazole ( IrS) ligands in addition to two labile acetonitrile ligands are demonstrated to constitute a highly versatile class of asymmetric Lewis acid catalysts. These complexes feature the metal center as the exclusive source of chirality and serve as effective asymmetric catalysts (0.5-5.0 mol % catalyst loading) for a variety of reactions with α,β-unsaturated carbonyl compounds, namely Friedel-Crafts alkylations (94-99 % ee), Michael additions with CH-acidic compounds (81-97 % ee), and a variety of cycloadditions (92-99 % ee with high d.r.). Mechanistic investigations and crystal structures of an iridium-coordinated substrates and iridium-coordinated products are consistent with a mechanistic picture in which the α,β-unsaturated carbonyl compounds are activated by two-point binding (bidentate coordination) to the chiral Lewis acid. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
23. Expanding the Family of Octahedral Chiral-at-Metal Cobalt(III) Catalysts by Introducing Tertiary Amine Moiety Into the Ligand
- Author
-
Ivan V. Fedyanin, Yuri N. Belokon, Tat'yana F. Savel'yeva, Olga V. Khromova, Victor I. Maleev, Vladimir A. Larionov, and Alexander F. Smol'yakov
- Subjects
hydrogen bond donor ,Tertiary amine ,chemistry.chemical_element ,chirality ,010402 general chemistry ,lcsh:Chemical technology ,01 natural sciences ,Catalysis ,lcsh:Chemistry ,Schiff base ,Moiety ,lcsh:TP1-1185 ,Physical and Theoretical Chemistry ,chiral-at-metal ,cobalt(III) ,010405 organic chemistry ,Chemistry ,Ligand ,Hydrogen bond ,metal-templated complex ,Combinatorial chemistry ,0104 chemical sciences ,Bifunctional catalyst ,lcsh:QD1-999 ,Brønsted–Lowry acid–base theory ,Cobalt - Abstract
Chiral metal-templated complexes are attractive catalysts for organic synthetic transformations. Herein, we introduce a novel chiral cobalt(III)-templated complex based on chiral trans-3,4-diamino-1-benzylpyrrolidine and 3,5-di-tert-butyl-salicylaldehyde which features both hydrogen bond donor and Brønsted base functionalities. The obtained complexes were fully characterized by 1H, 13C NMR, IR-, UV-vis, CD-spectroscopy and by a single X-ray diffraction analysis. It was shown that chlorine anion is connected with amino groups of the complex via a hydrogen bonding. DFT calculations of charges and molecular electrostatic potential of the cobalt(III) complex showed that the basicity of the complex is certainly diminished as compared with the routine tertiary amines but the acidity of the conjugated acid of the complex should be increased. Thus, the catalytic potential of the complex may be much greater as a chiral acid than a chiral base. We believe that this work opens a new way in chiral bifunctional catalyst design.
- Published
- 2021
24. Asymmetric Chiral-at-Rhodium Catalysis Driven by Visible Light or Electricity
- Author
-
Huang, Xiaoqiang and Meggers, Eric (Professor)
- Subjects
Asymmetric Catalysis ,Photochemistry ,ddc:540 ,Electrochemistry ,Chemie ,Katalyse ,Chemistry and allied sciences ,Chiral-at-Metal - Abstract
Driving asymmetric catalysis with visible light or electricity is of significant value because they represent ‘green’ and sustainable methods to synthesize non-racemic chiral molecules and in addition offer ample opportunities for chemists to discover new mechanistic scenarios and invent previously unknown transformations. However, steering the reaction course of photo- and/or electrochemically generated reactive intermediates in a stereocontrolled and catalytic fashion is very challenging. This thesis presents novel applications of previously in the Meggers group developed chiral-at-metal rhodium complexes to the areas of asymmetric photocatalysis and asymmetric electrosynthesis. 1) A bis-cyclometalated chiral-at-metal rhodium complex (designated as RhS) in combination with the photoredox catalyst [Ru(bpy)3](PF6)2 enables visible-light-activated asymmetric α-amination and α-alkylation of 2-acyl imidazoles with aryl azides or α-diazo carboxylic esters as radical precursors, respectively (Chapter 3.1). As the first utilization of these reagents for photoinduced asymmetric catalysis, this novel proton- and redox-neutral transformations feature the advantage of leaving molecular N2 as the sole by-product and provide yields of up to 99% as well as excellent enantioselectivities of up to >99% ee with broad functional group compatibility. 2) A bis-cyclometalated chiral-at-metal rhodium complex (designated as RhO) is demonstrated to catalyze stereocontrolled chemistry of photo-generated radicals and at the same time an enantioselective sulfonyl radical addition to alkenes (Chapter 3.2). Specifically, employing Hantzsch ester as photoredox mediator, rhodium bound β-enolate carbon-centered radicals are generated by a selective photoinduced single electron reduction and then trapped by allyl sulfones in a highly stereocontrolled fashion, providing radical allylation products with up to 97% ee. The hereby formed sulfonyl radicals are utilized through an enantioselective radical addition to form enantioenriched sulfones, which minimizes waste generation. 3) A simple and robust catalysis scheme that only relies on a single bis-cyclometalated rhodium catalyst (RhS) is introduced to achieve the stereocontrol of bond forming reactions directly from an electronically excited state. This is showcased by an intermolecular [2+2] photocycloaddition of enones with alkenes, which provides a wide range of cyclobutanes with up to >99% ee and up to >20:1 d.r. (Chapter 3.3). The catalyst/substrate complexation enhances visible-light-absorption, achieves selective direct photoexcitation, and enables stereocontrolled direct bond formation from the photoexcited state. All reactive intermediates remain bound to the chiral catalyst thereby providing a robust catalytic scheme (no exclusion of air necessary) with excellent stereoinduction. This strategy is further applied to a previously elusive visible-light-induced [2+3] photocycloaddition of acceptor-substituted alkenes with vinyl azides (Chapter 3.4). A wide range of complex 1-pyrrolines are obtained as single diastereoisomers and with up to >99% ee using a simple reaction setup and mild reaction conditions. This work expands the scope of stereocontrolled direct bond formation from photoexcited states which was previously limited to [2+2] photocycloadditions. 4) The chiral-at-metal complex RhS is shown to catalyze visible-light-activated catalytic asymmetric [3+2] photocycloadditions between acyl cyclopropanes and alkenes or alkynes, which provide access to cyclopentanes and cyclopentenes, respectively, in 63-99% yields and with excellent enantioselectivities of up to >99% ee (Chapter 3.5). Coordination of the cyclopropane with the chiral catalyst generates the visible-light-absorbing complex, lowers the reduction potential of the cyclopropane, and provides the asymmetric induction and overall stereocontrol. Enabled by a mild single electron transfer reduction of directly photoexcited catalyst/substrate complexes, the scope of asymmetric photocycloadditions is extended to simple mono-acceptor-substituted cyclopropanes with the synthesis of previously inaccessible enantioenhanced cyclopentane and cyclopentene derivatives. 5) A versatile electricity driven chiral-at-rhodium Lewis acid catalysis is disclosed (Chapter 3.6). Powered by an electric current, the oxidative cross coupling of 2-acyl imidazoles with silyl enol ethers provides a sustainable avenue to synthetically useful non-racemic 1,4-dicarbonyls, including products bearing all-carbon quaternary stereocenters. A chiral-at-rhodium complex (RhS or a sterically more demanding derivative) activates a substrate towards facile anodic oxidation by raising the highest occupied molecular orbital upon enolate formation, which enables mild redox conditions, high chemo- and enantioselectivities (up to >99% ee), and a broad substrate scope. This thesis demonstrates the robustness and versatility of bis-cyclometalated rhodium-based Lewis acids by developing several mechanistically diverse and synthetically attractive asymmetric catalysis schemes. These chiral-at-rhodium Lewis acids are among the most powerful catalysts to address the long-standing challenge of stereocontrol in photochemical and electrochemical reactions., Asymmetrische Katalyse mit sichtbarem Licht oder mit elektrischer Energie zu betreiben, ist von erheblichem Wert, da dies eine „grüne“ und nachhaltige Methode zur Synthese von chiralen Molekülen darstellt. Darüber hinaus bietet sie Chemikern die Gelegenheit, neue mechanistische Szenarien zu entdecken und bisher unbekannte Transformationen zu entwickeln. Es ist jedoch eine große Herausforderung, den Reaktionsverlauf von photo- und/ oder elektrochemisch erzeugten reaktiven Zwischenstufen stereokontrolliert und katalytisch zu steuern. Diese Arbeit präsentiert neuartige Anwendungen von zuvor in der Meggers-Gruppe entwickelten chiral-at-metal Rhodium-Komplexen auf den Gebieten der asymmetrischen Photokatalyse und der asymmetrischen Elektrosynthese. 1) Ein biscyclometallierter chiral-at-metal Rhodium-Komplex (als RhS bezeichnet) in Kombination mit dem Photoredoxkatalysator [Ru(bpy)3](PF6)2 ermöglicht eine durch sichtbares Licht aktivierte asymmetrische α-Aminierung und α-Alkylierung von 2-Acylimidazolen mit Arylaziden bzw. von α-Diazocarbonsäureestern als Radikalvorläufer (Kapitel 3.1). Als erste Verwendung dieser Reagenzien für die photoinduzierte asymmetrische Katalyse weisen diese neuen protonen- und redoxneutralen Umwandlungen den Vorteil auf, dass molekularer Stickstoff als einziges Nebenprodukt entsteht und Ausbeuten von bis zu 99% sowie ausgezeichnete Enantioselektivitäten von bis zu > 99% ee erreicht werden können. Darüber hinaus wird eine breite funktionelle Gruppenkompatibilität gewährleistet. 2) Es konnte zudem gezeigt werden, dass ein biscyclometallierter chiral-at-metal Rhodium-Komplex (als RhO bezeichnet) zugleich eine stereokontrollierte Chemie von photo-generierten Radikalen als auch eine enantioselektive Sulfonyl-Radikaladdition an Alkene ermöglichen kann (Kapitel 3.2). Insbesondere unter Verwendung von Hantzsch-Estern als Photoredox-Mediatoren werden Rh gebundene β-Enolat Radikale durch eine selektive photoinduzierte Einelektronenreduktion erzeugt und dann durch Allylsulfone hochstereokontrolliert abgefangen, wodurch radikalische Allylierungsprodukte mit bis zu 97% ee erhalten werden. Die dabei gebildeten Sulfonylradikale werden durch eine enantioselektive Radikaladdition zur Bildung enantiomerenreine Sulfone verwendet, wodurch die Abfallerzeugung minimiert wird. 3) Ein einfaches und robustes Katalyseverfahren, das nur einen einzigen biscyclometallierten Rhodiumkatalysator (RhS) verwendet, wird eingeführt, um die Stereokontrolle von Bindungsbildungsreaktionen direkt aus einem elektronisch angeregten Zustand zu erreichen. Dies zeigt eine intermolekulare [2+2]-Photocycloaddition von Enonen mit Alkenen, die ein breites Spektrum an Cyclobutanen mit bis zu 99% ee und bis zu >20:1 d.r. liefert (Kapitel 3.3). Die Katalysator/ Substrat-Komplexierung verbessert die Absorption von sichtbarem Licht, erreicht eine selektive direkte Photoanregung und ermöglicht die stereokontrollierte direkte Bindungsbildung aus dem photoangeregten Zustand. Alle reaktiven Zwischenprodukte bleiben an den chiralen Katalysator gebunden, wodurch ein robustes katalytisches System (kein Luftausschluss erforderlich) mit hervorragender Stereoinduktion bereitgestellt wird. Diese Strategie wird auch auf eine bisher schwer umsetzbare, durch sichtbares Licht induzierte [2+3]-Photocycloaddition von Akzeptor-substituierten Alkenen mit Vinylaziden angewendet (Kapitel 3.4). Eine Vielzahl an komplexen 1-Pyrrolinen kann jeweils als einfache Diastereoisomere mit bis zu >99% ee erhalten werden, unter Verwendung eines einfachen Reaktionsaufbaus und unter milden Reaktionsbedingungen. Diese Arbeit erweitert den Bereich der stereokontrollierten direkten Bindungsbildung aus photoangeregten Zuständen, der zuvor auf [2+2]-Photocycloadditionen beschränkt war. 4) Der chiral-at-metal-Komplex RhS ermöglicht eine durch sichtbares Licht aktivierte katalytische asymmetrische [3+2]-Photocycloaddition zwischen Acylcyclopropanen und Alkenen bzw. Alkinen, wodurch Cyclopentane bzw. Cyclopentene zugänglich sind. Hierbei werden Ausbeuten von 63-99% sowie ausgezeichnete Enantioselektivitäten von bis zu >99% ee (Kapitel 3.5) erreicht. Die Koordination des Cyclopropans an den chiralen Katalysator erzeugt den sichtbares Licht absorbierenden Komplex, senkt das Reduktionspotential des Cyclopropans und sorgt für die asymmetrische Induktion und die gesamte Stereokontrolle. Mittels einer milden Einelektronentransfer-Reduktion der direkt photoangeregten Katalysator-/ Substrat-Komplexe kann der Anwendungsbereich asymmetrischer Photocycloadditionen auf einfache Monoakzeptor-substituierte Cyclopropane ausgeweitet werden, wodurch bisher nicht zugängliche enantiomerenreine Cyclopentan- und Cyclopentenderivate synthetisiert werden können. 5) Eine vielseitige, durch Elektrizität betriebene chiral-at-Rhodium Lewis-Säure-Katalyse wird beschrieben (Kapitel 3.6). Durch elektrischen Strom angetrieben, bietet die oxidative Kreuzkupplung von 2-Acylimidazolen mit Silylenolethern einen nachhaltigen Weg zu synthetisch nützlichen nicht-racemischen 1,4-Dicarbonylen, einschließlich Produkten, die quartäre Stereozentren enthalten. Ein chiral-at-Rhodiumkomplex (RhS oder ein sterisch anspruchsvolleres Derivat) aktiviert ein Substrat in Bezug auf eine einfachen leichten anodische Oxidation, indem das höchstes besetztes Molekülorbital bei der Enolatbildung angehoben wird. Dies ermöglicht milde Redoxbedingungen, hohe Chemo- und Enantioselektivitäten (bis zu >99% ee) und ein breites Substratspektrum. Diese Arbeit demonstriert die Robustheit und Vielseitigkeit von biscyclometallierten auf Rhodium-basierenden Lewis-Säuren, indem sie mehrere mechanistisch unterschiedliche und synthetisch attraktive asymmetrische Katalyseverfahren entwickelt. Diese chiral-at-Rhodium Lewis-Säuren gehören zu den leistungsfähigsten Katalysatoren, welche die langjährige Herausforderung der Stereokontrolle in photochemischen und elektrochemischen Reaktionen in Angriff nehmen können.
- Published
- 2020
- Full Text
- View/download PDF
25. Diastereoselective synthesis of a “chiral-at-Ru” secondary phosphine complex
- Author
-
Gibson, Gregory L., Morrow, Krista M.E., McDonald, Robert, and Rosenberg, Lisa
- Subjects
- *
PHOSPHINE , *CHIRALITY , *RUTHENIUM , *METAL complexes , *INORGANIC synthesis , *SUBSTITUTION reactions , *DIASTEREOISOMERS , *STEREOCHEMISTRY - Abstract
Abstract: Synthesis of the half-sandwich ruthenium complex [RuCl(η5-indenyl){P(Bu t )(Ph)H}(PPh3)], 2, containing an unsymmetrically-substituted secondary phosphine, is described. A 60:40 kinetic distribution of the resulting diastereomers 2a and 2b shifts in solution at room temperature to give predominantly 2a. The relative stereochemistries at ruthenium and the secondary phosphine in each diastereomer have been assigned based on 1H NOESY NMR and crystallographic data. [Copyright &y& Elsevier]
- Published
- 2011
- Full Text
- View/download PDF
26. Non-planar manganese Schiff-base complexes; synthesis and molecular structures
- Author
-
Sanders, Christopher J., O'Shaughnessy, Paul N., and Scott, Peter
- Subjects
- *
MANGANESE , *SCHIFF bases - Abstract
The reactions of anhydrous sodium salts of three chiral biaryl-bridged salicylaldimine tetradentate proligands H2L with manganese(II) chloride give the corresponding solvated complexes [MnIIL]. The molecular structure of one chiral nonracemic example with a relatively low steric demand ligand set is shown to be composed of a homochiral dimer with bridging phenoxy groups. Both LMn units adopt the cis-β structure with Δ helicity as predetermined by the (R)-configuration of the biaryls. Oxidation of these compounds with halogens gives manganese(III) complexes. A complex [MnIIILI] has a trigonal bipyramidal structure with similar cis-β structure to that above. In contrast, the complex [MnL(OH2)2]Cl has the rather rare C2-symmetric cis-α structure. It is thus apparent then that while the biaryl unit in these and similar compounds is able to predetermine the chirality-at-metal very efficiently, it is quite possible for conversions between diastereomeric forms cis-β and cis-α, albeit with the same helicity, to occur in response to the nature of the co-ligands. [Copyright &y& Elsevier]
- Published
- 2003
- Full Text
- View/download PDF
27. Tethered ruthenium(II) η6-arene complexes: assessing the potential of benzylic substituents to control metal-centred chirality, and applications in asymmetric transfer hydrogenations of ketones.
- Author
-
Shroot, Stephanie, Prior, Timothy J., Wiles, Charlotte, and Murray, Benjamin S
- Subjects
- *
TRANSFER hydrogenation , *RUTHENIUM , *CHIRAL centers , *CHIRALITY , *RUTHENIUM catalysts , *KETONES , *METAL ions - Abstract
• Tethered ruthenium(II) η6-arene complexes are reported with a single benzylic substituent incorporated into the tether. • The complexes are active in asymmetric transfer hydrogenation reactions and enantioselectivity was observed in these reductions. • The ligand framework may be considered a promising route in controlling the stereochemical configuration at the metal ion. The synthesis and characterisation of a small series of tethered ruthenium(II) η6-arene complexes is described, where a single benzylic substituent is examined as a route to enforcing chirality at the metal centre upon ligation of a tethered bidentate ligand. The application of these complexes as catalysts in the asymmetric transfer hydrogenation of ketones is described, with moderate enantioselectivities confirming the validity of the approach. Tethered ruthenium(II) η6-arene complexes are described, where a single benzylic substituent is examined as a route to enforcing chirality at the metal centre upon ligation of a tethered bidentate ligand. These complexes were evaluated as catalysts in the asymmetric transfer hydrogenation of ketones. [Display omitted] [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
28. New Catalytic Properties of Chiral-at-Metal Complexes and a Cyclometalated Ru Complex
- Author
-
Qin, Jie and Meggers, Eric (Prof. Dr.)
- Subjects
ddc:540 ,chiral-at-metal ,C-H amination ,Chemie ,ruthenium ,asymmetric catalysis ,Chemistry & allied sciences - Abstract
Die asymmetrische Übergangsmetallkatalyse stellt eine der effektivsten Methoden zum Aufbau chiraler Moleküle dar. In dieser Arbeit wird sowohl die enantioselektive Katalyse mit chiral-at-metal Iridium- und Rutheniumkomplexen als auch mit chiralen mono-cyclometallierten Rutheniumkomplexen thematisiert. 1) Eine kinetische Racematspaltung von racemischen Epoxiden mit CO2 katalysiert durch einen chiral-at-metal, bis-cyclometallierten Iridiumkomplex konnte erfolgreich durchgeführt werden, wobei s-Faktoren von 6.4 bis 16.6 für insgesamt 21 monosubstituierte Epoxide mit verschieden funktionalisierten Seitenketten erreicht werden konnten. Bemerkenswerterweise konnten alle Reaktionen bei Raumtemperatur durchgeführt werden. Hierbei wurde keine Copolymerisation als Nebenreaktion beobachtet, welche in anderen katalytischen Systemen häufig auftrat. (Kapitel 3.1). 2) Die enantioselektive, intramolekulare, benzylische C-H-Aminierung von primären, aliphatischen Aziden wurde durch die Verwendung eines chiral-at-metal, bis(pyridyl-NHC)-Rutheniumkomplexes in Kombination mit Tris(p-fluorophenyl)phosphin (beide 1 mol%) erfolgreich angewandt, um eine Vielzahl chiraler α-Arylpyrrolidine mit bis zu 99% ee zu synthetisieren. In diesem einzigartigen Fall dient das Phosphin als entscheidender Nitren-Transfer-Cokatalysator, der das organische Azid durch Bildung eines intermediären Iminophosphorans aktiviert. Diese Methode bietet somit einen direkten, synthetischen Zugang zu chiralen α-Arylpyrrolidinen, die ein wichtiges Strukturmotiv in vielen bioaktiven Wirkstoffen sind (Kapitel 3.2). 3) Ein chiraler, cyclometallierter Ruthenium-Katalysator ermöglichte die direkte, enantioselektive und hochgradig diastereoselektive, oxidative Homokupplung von 2-Acylimidazolen in Anwesenheit eines Äquivalents BrCCl3, um chirale 1,4-Dicarbonylverbindungen mit einer Ausbeute von 38-75% und 57-95% ee zu erhalten. Bemerkenswerterweise wurde nur ein Diastereomer für alle untersuchten Substrate erhalten. Mechanistische Untersuchungen unterstützen einen einzigartigen Ruthenium-katalysierten Zwei-Stufen-Mechanismus. Der erste Schritt hierbei ist eine Ruthenium-katalysierte Bromierung der 2-Acylimidazole, welche das bromierte Produkt generiert, gefolgt von der Ruthenium-katalysierten, stereokontrollierten Radikal-Enolat Reaktion, die daraufhin zum finalen Produkt führt (Kapitel 3.3)., Asymmetric transition-metal catalysis constitutes one of the most powerful strategies to construct non-racemic chiral molecules. This thesis deals with enantioselective catalysis of chiral-at-metal iridium and ruthenium complexes as well as a chiral mono-cyclometalated ruthenium complex. 1) Kinetic resolution of racemic epoxides with CO2 catalyzed by a chiral-at-metal bis-cyclometalated iridium complex was accomplished, and s-factors between 6.4 and 16.6 were obtained for overall 21 monosubstituted epoxides containing diverse functional side chains. Notably, all reactions were performed at room temperature, and no copolymerization side reaction which occurred often in other catalytic systems was observed (Chapter 3.1). 2) Enantioselective intramolecular benzylic C-H amination of primary aliphatic azides was achieved by using a chiral-at-metal bis(pyridyl-NHC) ruthenium complex in combination with tris(p-fluorophenyl)phosphine (both 1 mol%) to provide a variety of chiral -aryl pyrrolidines with enantioselectivities of up to 99% ee. In this unique case, the phosphine serves as a crucial nitrene transfer co-catalyst and activates the organic azide through the formation of an intermediate iminophosphorane. This methodology offers direct access to non-racemic -aryl pyrrolidines which are very important structural motifs in many bioactive compounds. (Chapter 3.2). 3) A chiral cyclometalated ruthenium catalyst enabled direct enantioselective and highly diastereoselective oxidative homocoupling of 2-acyl imidazoles in the presence of one equivalent BrCCl3 to provide chiral symmetric 1,4-dicarbonyl compounds in 38-75% yield with 57-95% ee. Only one diastereomer was obtained for all the investigated substrates. Mechanistic experiments support a unique ruthenium catalyzed two-steps mechanism. The first step is a ruthenium catalyzed bromination of 2-acyl imidazole generating a brominated intermediate, followed by a ruthenium catalyzed stereo-controlled radical-enolate reaction providing the final product (Chapter 3.3).
- Published
- 2019
29. Design, Synthesis, and Application of a Nucleophilic Octahedral Stereogenic-Only-at-Metal Iridium(III) Catalyst
- Author
-
Cruchter, Thomas Josef
- Subjects
Benzoxazol ,nucleophilic catalysis ,Nukleophile Katalyse ,Acyltransfer ,Black Umlagerung ,Chemie ,Lewis base catalysis ,asymmetric catalysis ,Chemistry and allied sciences ,Metallzentrierte Chiralität ,Iridium ,Organische Chemie ,DFT ,Cyanopyrrol ,organometallic chem ,Asymmetrische Katalyse ,stereogenic-at-metal ,Cyclometallierung ,Steglich Umlagerung ,Metallorganische Chemie ,Lewis Base Katalyse ,Reaktionsmec ,acyl transfer ,Stereoinduktion ,chiral-at-metal - Abstract
««Main Topic»» The design, synthesis, and application of a versatile chiral nucleophilic iridium(III) catalyst, which features a stereogenic octahedral metal center as its exclusive element of chirality ('stereogenic-only-at-metal'), is presented. The devised catalyst features two custom-tailored bidentate cyclometalated phenylbenzoxazole ligands as well as a bidentate deprotonated 7-chloro-3H-imidazo[4,5-h]quinoline ligand, which serves as the catalyst's nucleophilic catalytically active site. At first, 28 different stereogenic-only-at-metal iridium(III) complexes were synthesized, evaluated, and the best-performing complex eventually selected. In this regard, it was revealed that the selected catalyst candidate was in fact the protonated precatalytic form of the actual catalyst. Next, it could be demonstrated that the developed stereogenic-only-at-metal complex serves as an efficient catalyst for the asymmetric Steglich rearrangement of O-acylated azlactones (up to 96% ee, up to 99% yield), for the asymmetric Black rearrangement of O-acylated benzofuranones (up to 94% ee, up to 99% yield), and for the asymmetric addition of 2-cyanopyrrole to aryl alkyl ketenes (up to 95% ee, up to 99% yield). Insights into the mechanism of the Steglich and the Black rearrangements with the developed stereogenic-only-at-metal catalyst, in particular into the catalyst's manner of enantioinduction, could be gained with a crystal structure of the active catalyst, with a crystal structure of a catalysis intermediate analog in combination with a DFT-assisted active site accessibility analysis, and with the explicit quantum chemical modeling of the stereogenic step of a showcase Black rearrangement with a slightly simplified model of the devised catalyst. The respective theoretical calculations were planned and coordinated in close collaboration with and performed by cooperation partner Michael G. Medvedev. ««Secondary Topic»» Secondary topic of the present thesis is the attempted development of a cooperative bifunctional stereogenic-only-at-metal enamine/hydrogen-bonding catalyst, which was intended to catalyze Michael additions of enolizable aldehydes and / or ketones to nitroalkenes and / or nitroacrylates. A synthetic access to the envisioned catalysts could be successfully established, however, stability problems with the complexes as well as unsatisfactory catalysis results ultimately led to the termination of this project. In spite of that, important knowledge could be attained regarding the synthesis of amine-functionalized bis-cyclometalated iridium(III) complexes and C2-symmetric bis-cyclometalated bispyrazole iridium(III) complexes, which has already contributed to successfully accomplished projects from the Meggers group and which may accordingly be helpful for future projects., ««Hauptthema»» Die Entwicklung, Synthese und Anwendung eines vielseitigen chiralen nukleophilen Iridium(III)-Katalysators, welcher als einziges Chiralitätselement ein stereogenes oktaedrisches Metallzentrum besitzt ('stereogenic-only-at-metal'), wird vorgestellt. Der entwickelte Katalysator verfügt neben zwei maßgeschneiderten bidentaten cyclometallierten Phenylbenzoxazol-Liganden über einen bidentaten deprotonierten 7-Chloro-3H-imidazo[4,5-h]chinolin-Liganden, welcher als nukleophiles katalytisch aktives Zentrum fungiert. Zunächst wurden 28 verschiedene 'stereogenic-only-at-metal' Iridium(III)-Komplexe synthetisiert, diese evaluiert und schließlich der leistungsfähigste Komplex ausgewählt. In diesem Zusammenhang wurde dargelegt, dass es sich bei dem ausgewähltem Komplex zunächst um die protonierte, katalytisch inaktive Präkatalysatorform des eigentlichen Katalysators handelte. Es konnte gezeigt werden, dass der entwickelte 'stereogenic-only-at-metal' Komplex als effizienter Katalysator für die asymmetrische Steglich-Umlagerung von O-acylierten Azlactonen (bis zu 96% ee, bis zu 99% Ausbeute), die asymmetrische Black-Umlagerung von O-acylierten Benzofuranonen (bis zu 94% ee, bis zu 99% Ausbeute) und für die asymmetrische Addition von 2-Cyanopyrrol an Arylalkylketene (bis zu 95% ee, bis zu 99% Ausbeute) dient. Einblicke in den Mechanismus der Steglich- und Black-Umlagerungen mit dem entwickelten Katalysator, insbesondere in Hinblick auf die Art und Weise der Enantioinduktion, konnten erlangt werden mit Hilfe einer Kristallstruktur des Katalysators, mit Hilfe einer Kristallstruktur eines Katalyseintermediat-Analogons in Kombination mit DFT-unterstützer Analyse der Zugänglichkeit des katalytisch aktiven Zentrums sowie mit Hilfe der expliziten quantenmechanischen Modellierung des stereogenen Schrittes einer exemplarischen Black-Umlagerung mit einem leicht vereinfachten Modell des entwickelten Katalysators. Die entsprechenden theoretischen Berechnungen wurden in enger Zusammenarbeit geplant und abgestimmt mit und durchgeführt von Kooperationspartner Michael G. Medvedev. ««Nebenthema»» Nebenthema der vorliegenden Dissertation ist die versuchte Entwicklung eines kooperativen bifunktionalen 'stereogenic-only-at-metal' Enamin/Wasserstoffbrücken-bindungs-Katalysators, der als Katalysator für die asymmetrische Michael-Addition von enolisierbaren Aldehyden und / oder Ketonen an Nitroalkene und / oder Nitroacrylate angedacht war. Ein synthetischer Zugang zu den angedachten Katalysatoren konnte erfolgreich etabliert werden, jedoch führten Stabilitätsprobleme mit den Komplexen sowie unbefriedigende Katalyseergebnisse schließlich zum Abbruch des Projektes. Dessen ungeachtet konnten wichtige Erkenntnisse in Bezug auf die Synthese Amin-funktionalisierter bis-cyclometallierter Iridium(III)-Komplexe sowie C2-symmetrischer bis-cyclometallierter Bispyrazol-Iridium(III)-Komplexe erlangt werden, welche bereits zu erfolgreich abgeschlossenen Projekten des AK Meggers beigetragen haben und daher auch für zukünftige Projekte wieder relevant werden könnten.
- Published
- 2018
- Full Text
- View/download PDF
30. Bis-Cyclometalated Indazole and Benzimidazole Chiral-at-Iridium Complexes: Synthesis and Asymmetric Catalysis.
- Author
-
Brunen, Sebastian, Grell, Yvonne, Steinlandt, Philipp S., Harms, Klaus, Meggers, Eric, and Ritleng, Vincent
- Subjects
ASYMMETRIC synthesis ,CATALYSIS ,BENZIMIDAZOLES ,ACETONITRILE ,CATALYSTS ,IRIDIUM ,ENANTIOSELECTIVE catalysis - Abstract
A new class of bis-cyclometalated iridium(III) catalysts containing two inert cyclometalated 6-tert-butyl-2-phenyl-2H-indazole bidentate ligands or two inert cyclometalated 5-tert-butyl-1-methyl-2-phenylbenzimidazoles is introduced. The coordination sphere is complemented by two labile acetonitriles, and a hexafluorophosphate ion serves as a counterion for the monocationic complexes. Single enantiomers of the chiral-at-iridium complexes (>99% er) are obtained through a chiral-auxiliary-mediated approach using a monofluorinated salicyloxazoline and are investigated as catalysts in the enantioselective conjugate addition of indole to an α,β-unsaturated 2-acyl imidazole and an asymmetric Nazarov cyclization. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
31. Expanding the Family of Octahedral Chiral-at-Metal Cobalt(III) Catalysts by Introducing Tertiary Amine Moiety into the Ligand.
- Author
-
Savel'yeva, Tat'yana F., Khromova, Olga V., Larionov, Vladimir A., Smol'yakov, Alexander F., Fedyanin, Ivan V., Belokon, Yuri N., Maleev, Victor I., and Valyaev, Dmitry A.
- Subjects
- *
TERTIARY amines , *CATALYSTS , *ELECTRIC potential , *AMINO group , *MOIETIES (Chemistry) , *COBALT - Abstract
Chiral metal-templated complexes are attractive catalysts for organic synthetic transformations. Herein, we introduce a novel chiral cobalt(III)-templated complex based on chiral trans-3,4-diamino-1-benzylpyrrolidine and 3,5-di-tert-butyl-salicylaldehyde which features both hydrogen bond donor and Brønsted base functionalities. The obtained complexes were fully characterized by 1H, 13C NMR, IR-, UV-vis, CD-spectroscopy and by a single X-ray diffraction analysis. It was shown that chlorine anion is connected with amino groups of the complex via a hydrogen bonding. DFT calculations of charges and molecular electrostatic potential of the cobalt(III) complex showed that the basicity of the complex is certainly diminished as compared with the routine tertiary amines but the acidity of the conjugated acid of the complex should be increased. Thus, the catalytic potential of the complex may be much greater as a chiral acid than a chiral base. We believe that this work opens a new way in chiral bifunctional catalyst design. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
32. A theoretical study on spectroscopic properties and quantum yields of chiral-at-metal cyclometalated Pt(II) complexes.
- Author
-
Huang, Shuang, Yang, Baozhu, and Luo, Shiping
- Subjects
- *
SPIN-orbit interactions , *REORGANIZATION energy , *EXCITED states , *PHOSPHORESCENCE , *DECAY rates (Radioactivity) , *DELAYED fluorescence , *PLATINUM - Abstract
A new kind of chiral-at-metal Pt(II) complexes have been explored with theoretical methods. These chiral complexes are synthesized with achiral chelate ligands and the platinum(II) ions serve as the stereo center. To explore the intersystem crossing (ISC) and radiative decay process, we investigated the absorption and phosphorescence property, spin-orbit coupling (SOC) matrix element, major intersystem crossing channel and phosphorescent transition rate. For the temperature-dependent nonradiative decay process, the metal-centered excited state (3MC), the transition state (TS), and the minimum energy crossing point (MECP) were investigated with theoretical calculation. The way of temperature-independent nonradiative decay which has weak influence on nonradiative decay rate was also compared through the calculation of reorganization energy (λ) between the ground state (S 0) and the lowest triplet excited state(T 1). • A new kind of chiral-at-metal cyclometalated Pt(II) complexes have been explored. • The intersystem crossing rates of S n.→ T m have been analyzed. • The radiative and nonradiative rates have been discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.