4 results on '"cellobiose déshydrogénase"'
Search Results
2. Inactivation of cellobiose dehydrogenases modifies the cellulose degradation mechanism of Podospora anserina
- Author
-
David Navarro, Kevin D. Hyde, Valérie Gautier, Didier Chevret, Laetitia Chan Ho Tong, Narumon Tangthirasunun, Philippe Silar, Jean-Guy Berrin, Sona Garajova, Laboratoire Interdisciplinaire des Energies de Demain (LIED (UMR_8236)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Biodiversité et Biotechnologie Fongiques (BBF), École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), MICrobiologie de l'ALImentation au Service de la Santé (MICALIS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Center of Excellence in Fungal Research and School of Science, Mae Fah Luang University [Thaïlande] (MFU), Université Paris Diderot - Paris 7 (UPD7), grant P3AMB Region Ile de France, Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA)-École Centrale de Marseille (ECM), INL - Conception de Systèmes Hétérogènes (INL - CSH), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut Jacques Monod (IJM (UMR_7592)), Ambassade de France à Bangkok University Paris 7Région Ile-de-FranceP3AMBUniversity Paris 11, Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Cellobiose dehydrogenase ,dégradation de la biomasse ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,[SDV]Life Sciences [q-bio] ,Mutant ,Cellobiose ,Polysaccharide ,Applied Microbiology and Biotechnology ,Podospora anserina ,Fungal Proteins ,03 medical and health sciences ,chemistry.chemical_compound ,podospora anserina ,Podospora ,dégradation de la cellulose ,Cellulose ,cellobiose dehydrogenase ,Phylogeny ,2. Zero hunger ,chemistry.chemical_classification ,Ecology ,biology ,beta glucosidase ,Beta-glucosidase ,Wild type ,biomass degradation ,15. Life on land ,biology.organism_classification ,Enzyme Activation ,030104 developmental biology ,Phenotype ,Biochemistry ,chemistry ,cellobiose déshydrogénase ,Biodegradation ,Carbohydrate Dehydrogenases ,Gene Deletion ,Food Science ,Biotechnology - Abstract
Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 ( PaCDH1 ) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. IMPORTANCE Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO.
- Published
- 2016
- Full Text
- View/download PDF
3. Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina
- Author
-
Charlotte Champion, Simeng Zhou, Jean-Guy Berrin, Eric Record, Hélène Rogniaux, Mathieu Fanuel, Mireille Haon, Sacha Grisel, Chloé Bennati-Granier, Sona Garajova, David Ropartz, Isabelle Gimbert, Polytech Marseille (AMU POLYTECH), Aix Marseille Université (AMU), Biodiversité et Biotechnologie Fongiques (BBF), Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA)-École Centrale de Marseille (ECM), Institute of Chemistry, Slovakian Academy of sciences, INRA Plateforme BIBS, Unité de Recherche Biopolymères, Interactions, Assemblages, École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Berrin, Jean-Guy, Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA), and Institut National de la Recherche Agronomique (INRA)
- Subjects
dégradation de la biomasse ,CELLOBIOSE DEHYDROGENASE ,CELLULOSE DEGRADATION ,Applied Microbiology and Biotechnology ,Podospora anserina ,dégradation enzymatique ,LIGNOCELLULOSIC BIOMASS ,AA9 ,SACCHARIFICATION ,LPMO ,Biomass ,Trichoderma reesei ,chemistry.chemical_classification ,0303 health sciences ,biology ,Biologie du développement ,monooxygénase ,Development Biology ,Oxidized cello-oligosaccharides ,FAMILY ,TRICHODERMA-REESEI ,OLIGOSACCHARIDES ,General Energy ,Biochemistry ,Lytic cycle ,champignon ascomycete ,Lignocellulose ,ENZYMES ,Biotechnology ,Research Article ,Cellobiose dehydrogenase ,hémicellulose ,Management, Monitoring, Policy and Law ,Oxidative cleavage ,Polysaccharide ,Microbiology ,Neurospora crassa ,03 medical and health sciences ,Biorefinery ,Cellulose ,Hemicellulose ,podospora anserina ,NEUROSPORA-CRASSA ,030304 developmental biology ,030306 microbiology ,Renewable Energy, Sustainability and the Environment ,Monooxygenase ,biology.organism_classification ,champignon filamenteux ,Enzyme ,PICHIA-PASTORIS ,chemistry ,cellobiose déshydrogénase ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology - Abstract
Background The understanding of enzymatic polysaccharide degradation has progressed intensely in the past few years with the identification of a new class of fungal-secreted enzymes, the lytic polysaccharide monooxygenases (LPMOs) that enhance cellulose conversion. In the fungal kingdom, saprotrophic fungi display a high number of genes encoding LPMOs from family AA9 but the functional relevance of this redundancy is not fully understood. Results In this study, we investigated a set of AA9 LPMOs identified in the secretomes of the coprophilous ascomycete Podospora anserina, a biomass degrader of recalcitrant substrates. Their activity was assayed on cellulose in synergy with the cellobiose dehydrogenase from the same organism. We showed that the total release of oxidized oligosaccharides from cellulose was higher for PaLPMO9A, PaLPMO9E, and PaLPMO9H that harbored a carbohydrate-binding module from the family CBM1. Investigation of their regioselective mode of action revealed that PaLPMO9A and PaLPMO9H oxidatively cleaved at both C1 and C4 positions while PaLPMO9E released only C1-oxidized products. Rapid cleavage of cellulose was observed using PaLPMO9H that was the most versatile in terms of substrate specificity as it also displayed activity on cello-oligosaccharides and β-(1,4)-linked hemicellulose polysaccharides (e.g., xyloglucan, glucomannan). Conclusions This study provides insights into the mode of cleavage and substrate specificities of fungal AA9 LPMOs that will facilitate their application for the development of future biorefineries. Electronic supplementary material The online version of this article (doi:10.1186/s13068-015-0274-3) contains supplementary material, which is available to authorized users.
- Published
- 2015
- Full Text
- View/download PDF
4. Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes
- Author
-
Jean Claude Sigoillot, Mathieu Bey, Laetitia Poidevin, Jean-Guy Berrin, Unité mixte de recherche de biotechnologie des champignons filamenteux, Université de Provence - Aix-Marseille 1-Institut National de la Recherche Agronomique (INRA)-Université de la Méditerranée - Aix-Marseille 2, Institut Français du Pétrole, This work was supported by the Futurol project. We thank Siemeng Zhou for technical assistance in bioreactor culture, CIRM Marseille for supplying Pycnoporus cinnabarinus strain BRFM 137, and Sacha Grisel for sugar analysis, and Bey, Mathieu
- Subjects
Cellobiose dehydrogenase ,[SDV]Life Sciences [q-bio] ,lcsh:QR1-502 ,Lignocellulosic biomass ,Bioengineering ,Lignin ,Applied Microbiology and Biotechnology ,white-rot fungi ,lcsh:Microbiology ,Pichia ,Microbiology ,Pichia pastoris ,Fungal Proteins ,03 medical and health sciences ,lignocellulose ,expression hétérologue ,processus ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,gluconic acid ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,cdh ,saccharification ,biomass ,biotechnology and applied microbiology ,030304 developmental biology ,0303 health sciences ,Fungal protein ,biology ,030306 microbiology ,Research ,Pycnoporus cinnabarinus ,biology.organism_classification ,Pycnoporus ,Recombinant Proteins ,Biochemistry ,cellobiose déshydrogénase ,Carbohydrate Dehydrogenases ,Electrophoresis, Polyacrylamide Gel ,Heterologous expression ,Biotechnology - Abstract
Background Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoenzyme produced by lignocellulose-degrading fungi including Pycnoporus cinnabarinus. We investigated the cellulolytic system of P. cinnabarinus, focusing on the involvement of CDH in the deconstruction of lignocellulosic biomass. Results First, P. cinnabarinus growth conditions were optimized for CDH production. Following growth under cellulolytic conditions, the main components secreted were cellulases, xylanases and CDH. To investigate the contribution of P. cinnabarinus secretome in saccharification processes, the Trichoderma reesei enzymatic cocktail was supplemented with the P. cinnabarinus secretome. A significant enhancement of the degradation of wheat straw was observed with (i) the production of a large amount of gluconic acid, (ii) increased hemicellulose degradation, and (iii) increased overall degradation of the lignocellulosic material. P. cinnabarinus CDH was heterologously expressed in Pichia pastoris to obtain large amounts of pure enzyme. In a bioreactor, the recombinant CDH (rCDH) expression level reached 7800 U/L. rCDH exhibited values of biochemical parameters similar to those of the natural enzyme, and was able to bind cellulose despite the absence of a carbohydrate-binding module (CBM). Following supplementation of purified rCDH to T. reesei enzymatic cocktail, formation of gluconic acid and increased hemicellulose degradation were observed, thus confirming the previous results observed with P. cinnabarinus secretome. Conclusions We demonstrate that CDH offers an attractive tool for saccharification process enhancement due to gluconic acid production from raw lignocellulosic material.
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.