4,771 results on '"cell envelope"'
Search Results
2. Advances in the development of phage-mediated cyanobacterial cell lysis.
- Author
-
Jin, Haojie, Ge, Wanzhao, Li, Mengzhe, Wang, Yan, Jiang, Yanjing, Zhang, Jiaqi, Jing, Yike, Tong, Yigang, and Fu, Yujie
- Subjects
- *
CELL envelope (Biology) , *LYSIS , *CYANOBACTERIAL blooms , *HETEROTROPHIC bacteria , *BACTERIAL cells - Abstract
AbstractCyanobacteria, the only oxygenic photoautotrophs among prokaryotes, are developing as both carbon building blocks and energetic self-supported chassis for the generation of various bioproducts. However, one of the challenges to optimize it as a more sustainable platform is how to release intracellular bioproducts for an easier downstream biorefinery process. To date, the major method used for cyanobacterial cell lysis is based on mechanical force, which is energy-intensive and economically unsustainable. Phage-mediated bacterial cell lysis is species-specific and highly efficient and can be conducted under mild conditions; therefore, it has been intensively studied as a bacterial cell lysis weapon. In contrast to heterotrophic bacteria, biological cell lysis studies in cyanobacteria are lagging behind. In this study, we reviewed cyanobacterial cell envelope features that could affect cell strength and elicited a thorough presentation of the necessary phage lysin components for efficient cell lysis. We then summarized all bioengineering manipulated pipelines for lysin component optimization and further revealed the challenges for each intent-oriented application in cyanobacterial cell lysis. In addition to applied biotechnology usage, the significance of phage-mediated cyanobacterial cell lysis could also advance sophisticated biochemical studies and promote biocontrol of toxic cyanobacteria blooms. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. A team of chaperones play to win in the bacterial periplasm.
- Author
-
Devlin, Taylor and Fleming, Karen G.
- Subjects
- *
CELL envelope (Biology) , *MEMBRANE proteins , *VIRULENCE of bacteria , *CARRIER proteins , *PROTEIN conformation - Abstract
Outer membrane protein (OMP) biogenesis is essential to bacterial cell survival and virulence in Gram-negative bacteria. A robust and functionally redundant protein quality control network in the periplasm prevents the formation of toxic aggregates and facilitates proper OMP assembly at the OM. Recent work demonstrates that, despite having overlapping functions, chaperones survival factor A (SurA), seventeen-kilodalton protein (Skp), and FK506 binding protein A (FkpA) and protease chaperone DegP also contribute uniquely to OMP biogenesis. The complex 'teamwork' apparent in OMP biogenesis emerges from individual interactions between periplasmic players and unfolded OMP clients. The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with β-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and kinetic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Insight into the outer membrane asymmetry of P. aeruginosa and the role of MlaA in modulating the lipidic composition, mechanical, biophysical, and functional membrane properties of the cell envelope
- Author
-
M. Kaur, N. Mozaheb, T. O. Paiva, M.-F. Herent, F. Goormaghtigh, A. Paquot, R. Terrasi, E. Mignolet, J.-L. Décout, J. H. Lorent, Y. Larondelle, G. G. Muccioli, J. Quetin-Leclercq, Y. F. Dufrêne, and M.-P. Mingeot-Leclercq
- Subjects
P. aeruginosa ,outer membrane ,membrane biophysics ,lipids ,cell envelope ,Microbiology ,QR1-502 - Abstract
ABSTRACT In Gram-negative bacteria, the outer membrane (OM) is asymmetric, with lipopolysaccharides (LPS) in the outer leaflet and glycerophospholipids (GPLs) in the inner leaflet. The asymmetry is maintained by the Mla system (MlaA-MlaBCDEF), which contributes to lipid homeostasis by removing mislocalized GPLs from the outer leaflet of the OM. Here, we ascribed how Pseudomonas aeruginosa ATCC 27853 coordinately regulates pathways to provide defense against the threats posed by the deletion of mlaA. Especially, we explored (i) the effects on membrane lipid composition including LPS, GPLs, and lysophospholipids, (ii) the biophysical properties of the OM such as stiffness and fluidity, and (iii) the impact of these changes on permeability, antibiotic susceptibility, and membrane vesicles (MVs) generation. Deletion of mlaA induced an increase in total GPLs and a decrease in LPS level while also triggering alterations in lipid A structures (arabinosylation and palmitoylation), likely to be induced by a two-component system (PhoPQ-PmrAB). Altered lipid composition may serve a physiological purpose in regulating the mechanobiological and functional properties of P. aeruginosa. We demonstrated an increase in cell stiffness without alteration of turgor pressure and inner membrane (IM) fluidity in ∆mlaA. In addition, membrane vesiculation increased without any change in OM/IM permeability. An amphiphilic aminoglycoside derivative (3’,6-dinonyl neamine) that targets P. aeruginosa membranes induced an opposite effect on ∆mlaA strain with a trend toward a return to the situation observed for the WT strain. Efforts dedicated to understanding the crosstalk between the OM lipid composition, and the mechanical behavior of bacterial envelope, is one needed step for designing new targets or new drugs to fight P. aeruginosa infections.IMPORTANCEPseudomonas aeruginosa is a Gram-negative bacterium responsible for severe hospital-acquired infections. The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier against toxic compounds, and therefore, compromising this structure could increase sensitivity to antibiotics. The OM is asymmetric with the highly packed lipopolysaccharide monolayer at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla pathway resulting in the retrograde transport of glycerophospholipids from the OM to the inner membrane. In this study, we show that deleting mlaA, the membrane component of Mla system located at the OM, affects the mechanical and functional properties of P. aeruginosa cell envelope. Our results provide insights into the role of MlaA, involved in the Mla transport pathway in P. aeruginosa.
- Published
- 2024
- Full Text
- View/download PDF
5. Spatial arrangement and density variations in the cell envelope of Deinococcus radiodurans.
- Author
-
Farci, Domenica and Piano, Dario
- Subjects
- *
DEINOCOCCUS radiodurans , *SPATIAL arrangement , *SURFACE phenomenon , *DENSITY - Abstract
The cell envelope of the poly-extremophile bacterium Deinococcus radiodurans is renowned for its highly organized structure and unique functional characteristics. In this bacterium, a precise regularity characterizes not just the S-layer, but it also extends to the underlying cell envelope layers, resulting in a dense and tightly arranged configuration. This regularity is attributed to a minimum of three protein complexes located at the outer membrane level. Together, they constitute a recurring structural unit that extends across the cell envelope, effectively tiling the entirety of the cell body. Nevertheless, a comprehensive grasp of the vacant spaces within each layer and their functional roles remains limited. In this study, we delve into these aspects by integrating the state of the art with structural calculations. This approach provides crucial evidence supporting an evolutive pressure intricately linked to surface phenomena depending on the environmental conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
6. Crosslink cleaving enzymes: the smart autolysins that remodel the bacterial cell wall.
- Author
-
Rajguru, Vaidehi, Chatterjee, Stuti, Garde, Shambhavi, and Reddy, Manjula
- Subjects
- *
BACTERIAL cell walls , *AUTOLYSINS , *ENZYMES , *PEPTIDES , *CELL membranes , *NEUROPEPTIDES - Abstract
Peptidoglycan (PG), an essential component of the cell envelope unique to the bacterial kingdom, is the target of several widely used antibiotics and continues to be an attractive candidate for development of novel antimicrobials. PG is a covalently closed macromolecule surrounding the plasma membrane that forms a unique mesh-like polymer conferred by crosslinking of glycan strands through short peptides. Bacteria encode several specialized enzymes for the formation and hydrolysis of the PG, enabling its remodeling in response to cellular requirement and environmental growth conditions. Peptide crosslinks are the load-bearing bonds of PG, and enzymes that cleave the crosslinks are mediators of PG plasticity. Crosslink-specific endopeptidases play a fundamental role in cell wall expansion and emerge as promising targets for novel antimicrobials. Peptidoglycan (PG) is a protective mesh-like polymer in bacterial cell walls that enables their survival in almost every ecological niche. PG is formed by crosslinking of several glycan strands through short peptides, conferring a characteristic structure and elasticity, distinguishing it from other polymeric exoskeletons. The significance of PG crosslink formation has been known for decades, as some of the most widely used antibiotics, namely β-lactams, target the enzymes that catalyze this step. However, the importance of crosslink hydrolysis in PG biology remained largely underappreciated. Recent advances demonstrate the functions of crosslink cleavage in diverse physiological processes, including an indispensable role in PG expansion during the cell cycle, thereby making crosslink cleaving enzymes an untapped target for novel drugs. Here, we elaborate on the fundamental roles of crosslink-specific endopeptidases and their regulation across the bacterial kingdom. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
7. Antimicrobial Activity and Mechanisms of Punicalagin against Vibrio parahaemolyticus.
- Author
-
Liu, Hongli, Zhu, Wenxiu, Zou, Yue, and Xia, Xiaodong
- Subjects
VIBRIO parahaemolyticus ,ANTI-infective agents ,ANTIBACTERIAL agents ,NUCLEIC acids ,POTASSIUM ions ,POTASSIUM channels ,VIRAL envelope proteins - Abstract
This study sought to explore the antimicrobial activity of punicalagin against V. parahaemolyticus and its potential modes of action. V. parahaemolyticus ATCC 17802 and RIMD 2210633
Sm were exposed to punicalagin, and the energy production, membrane potential, and envelope permeability, as well as the interaction with cell biomolecules, were measured using a variety of fluorescent probes combined with electrophoresis and Raman spectroscopy. Punicalagin treatment disrupted the envelope integrity and induced a decrease in intracellular ATP and pH. The uptake of 1-N-phenyl-naphtylamine (NPN) demonstrated that punicalagin weakened the outer membrane. Punicalagin damaged the cytoplasmic membrane, as indicated by the membrane depolarization and the leakage of intracellular potassium ions, proteins, and nucleic acids. Electronic microscopy observation visualized the cell damage caused by punicalagin. Further, gel electrophoresis coupled with the Raman spectrum assay revealed that punicalagin affected the protein expression of V. parahaemolyticus, and there was no effect on the integrity of genomic DNA. Therefore, the cell envelope and proteins of V. parahaemolyticus were the assailable targets of punicalagin treatment. These findings suggested that punicalagin may be promising as a natural bacteriostatic agent to control the growth of V. parahaemolyticus. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
8. mSphere of Influence: Celebrating exceptions to the rule of lipid A essentiality
- Author
-
Katherine R. Hummels
- Subjects
cell envelope ,outer membrane ,lipid A ,lipopolysaccharide ,Microbiology ,QR1-502 - Abstract
ABSTRACTKate Hummels works in the field of bacterial cell envelope biosynthesis and studies the regulation of the metabolic pathways needed to build the Gram-negative cell envelope. In this mSphere of Influence article, she reflects on how the papers “A penicillin-binding protein inhibits selection of colistin-resistant, lipopoligosaccharide-deficient Acinetobacter baumannii” by Boll et al. and “Caulobacter lipid A is conditionally dispensable in the absence of fur and in the presence of anionic sphingolipids” by Zik et al. made an impact on her by studying organisms that deviate from accepted norms to highlight the plethora of unanswered questions in cell envelope biology.
- Published
- 2024
- Full Text
- View/download PDF
9. MacP bypass variants of Streptococcus pneumoniae PBP2a suggest a conserved mechanism for the activation of bifunctional cell wall synthases
- Author
-
Caroline Midonet, Sean Bisset, Irina Shlosman, Felipe Cava, David Z. Rudner, and Thomas G. Bernhardt
- Subjects
penicillin-binding proteins ,peptidoglycan ,cell envelope ,cell wall ,Microbiology ,QR1-502 - Abstract
ABSTRACTThe peptidoglycan (PG) layer protects bacteria from osmotic lysis and defines their shape. The class A penicillin-binding proteins (aPBPs) are PG synthases that possess both glycan polymerization and crosslinking activities needed for PG biogenesis. In Gram-negative bacteria, aPBPs require activation by outer membrane lipoproteins, which are thought to stimulate their cognate synthase by inducing conformational changes that promote polymerase function. How aPBPs are controlled in Gram-positive bacteria is less clear. One of the few known regulators is MacP in Streptococcus pneumoniae (Sp). MacP is required for the activity of Sp PBP2a, but its mode of action has been obscure. We therefore selected for PBP2a variants capable of functioning in the absence of MacP. Amino acid substitutions that bypassed the MacP requirement for PBP2a function in vivo also activated its polymerase activity in vitro. Many of these changes mapped to the interface between the transmembrane (TM) helix and polymerase domain in a model PBP2a structure. This region is conformationally flexible in the experimentally determined structures of aPBPs and undergoes a structural transition upon binding the substrate-mimicking drug moenomycin. Our findings suggest that MacP promotes PG polymerization by altering the TM-polymerase domain interface in PBP2a and that this mechanism for aPBP activation may be broadly conserved. Furthermore, Sp cells expressing an activated PBP2a variant displayed heterogeneous shapes, highlighting the importance of proper aPBP regulation in cell morphogenesis.IMPORTANCEClass A penicillin-binding proteins (aPBPs) play critical roles in bacterial cell wall biogenesis. As the targets of penicillin, they are among the most important drug targets in history. Although the biochemical activities of these enzymes have been well studied, little is known about how they are regulated in cells to control when and where peptidoglycan is made. In this report, we isolate variants of the Streptococcus pneumoniae enzyme PBP2a that function in cells without MacP, a partner normally required for its activity. The amino acid substitutions activate the cell wall synthase activity of PBP2a, and their location in a model structure suggests an activation mechanism for this enzyme that is shared with aPBPs from distantly related organisms with distinct activators.
- Published
- 2023
- Full Text
- View/download PDF
10. The Gram-negative permeability barrier: tipping the balance of the in and the out
- Author
-
Claire Maher and Karl A. Hassan
- Subjects
Gram-negative bacteria ,cell envelope ,antibiotic resistance ,Microbiology ,QR1-502 - Abstract
ABSTRACTGram-negative bacteria are intrinsically resistant to many antibiotics, due in large part to the permeability barrier formed by their cell envelope. The complex and synergistic interplay of the two Gram-negative membranes and active efflux prevents the accumulation of a diverse range of compounds that are effective against Gram-positive bacteria. A lack of detailed information on how components of the cell envelope contribute to this has been identified as a key barrier to the rational development of new antibiotics with efficacy against Gram-negative species. This review describes the current understanding of the role of the different components of the Gram-negative cell envelope in preventing compound accumulation and the state of efforts to describe properties that allow compounds to overcome this barrier and apply them to the development of new broad-spectrum antibiotics.
- Published
- 2023
- Full Text
- View/download PDF
11. An inhibitor/anti-inhibitor system controls the activity of lytic transglycosylase MltF in Pseudomonas aeruginosa
- Author
-
Michelle Wang, Sheya Xiao Ma, and Andrew J. Darwin
- Subjects
Pseudomonas aeruginosa ,cell wall ,enzyme regulation ,hydrolase ,cell envelope ,Microbiology ,QR1-502 - Abstract
ABSTRACTMost bacterial cell envelopes contain a cell wall layer made of peptidoglycan. The synthesis of new peptidoglycan is critical for cell growth, division, and morphogenesis and is also coordinated with peptidoglycan hydrolysis to accommodate the new material. However, the enzymes that cleave peptidoglycan must be carefully controlled to avoid autolysis. In recent years, some control mechanisms have begun to emerge, although there are many more questions than answers for how most cell wall hydrolases are regulated. Here, we report a novel cell wall hydrolase control mechanism in Pseudomonas aeruginosa, which we discovered during our characterization of a mutant sensitive to the overproduction of a secretin protein. The mutation affected an uncharacterized Sel1-like repeat protein encoded by the PA3978 locus. In addition to the secretin-sensitivity phenotype, PA3978 disruption also increased resistance to a β-lactam antibiotic used in the clinic. In vivo and in vitro analyses revealed that PA3978 binds to the catalytic domain of the lytic transglycosylase MltF and inhibits its activity. ∆PA3978 mutant phenotypes were suppressed by deleting mltF, consistent with them having been caused by elevated MltF activity. We also discovered another interaction partner of PA3978 encoded by the PA5502 locus. The phenotypes of a ∆PA5502 mutant suggested that PA5502 interferes with the inhibitory function of PA3978 toward MltF, and we confirmed that activity for PA5502 in vitro. Therefore, PA3978 and PA5502 form an inhibitor/anti-inhibitor system that controls MltF activity. We propose to name these proteins IltA (inhibitor A of lytic transglycosylase) and LiiA (lytic transglycosylase inhibitor A’s inhibitor).IMPORTANCEA peptidoglycan cell wall is an essential component of almost all bacterial cell envelopes, which determines cell shape and prevents osmotic rupture. Antibiotics that interfere with peptidoglycan synthesis have been one of the most important treatments for bacterial infections. Peptidoglycan must also be hydrolyzed to incorporate new material for cell growth and division and to help accommodate important envelope-spanning systems. However, the enzymes that hydrolyze peptidoglycan must be carefully controlled to prevent autolysis. Exactly how this control is achieved is poorly understood in most cases but is a highly active area of current research. Identifying hydrolase control mechanisms has the potential to provide new targets for therapeutic intervention. The work here reports the important discovery of a novel inhibitor/anti-inhibitor system that controls the activity of a cell wall hydrolase in the human pathogen Pseudomonas aeruginosa, which also affects resistance to an antibiotic used in the clinic.
- Published
- 2023
- Full Text
- View/download PDF
12. Characterizing the role of phosphatidylglycerol-phosphate phosphatases in Acinetobacter baumannii cell envelope biogenesis and antibiotic resistance
- Author
-
Maoge Zang, Alice Ascari, Felise G. Adams, Saleh Alquethamy, and Bart A. Eijkelkamp
- Subjects
Cell envelope ,Phospholipids ,Desaturase ,Peptidoglycan ,Antibiotic resistance ,Cytology ,QH573-671 - Abstract
The dissemination of multi-drug resistant Acinetobacter baumannii threatens global healthcare systems and necessitates the development of novel therapeutic options. The Gram-negative bacterial cell envelope provides a first defensive barrier against antimicrobial assault. Essential components of this multi-layered complex are the phospholipid-rich membranes. Phosphatidylglycerol phosphate (PGP) phosphatases are responsible for a key step in the biosynthesis of a major phospholipid species, phosphatidylglycerol (PG), but these enzymes have also been implicated in the biogenesis of other cell envelope components. Our bioinformatics analyses identified two putative PGP candidates in the A. baumannii genome, PgpA and PgpB. Phospholipid analyses of isogenic pgpA mutants in two distinct A. baumannii strains revealed a shift in the desaturation levels of phosphatidylethanolamine (PE) phospholipid species, possibly due to the activation of the phospholipid desaturase DesA. We also investigated the impact of the inner membrane phosphatases on other cell envelope components, which revealed a role of PgpB in the maintenance of the A. baumannii peptidoglycan layer, and consequently carbapenem resistance. Collectively, this work provides novel insights into the roles of PGP phosphatases on the global lipidomic landscape of A. baumannii and their interconnectivity with the biogenesis of other cell envelope components. The non-essentiality of these candidates exemplifies metabolic versatility of A. baumannii, which is believed to be key to its success as global pathogen.
- Published
- 2023
- Full Text
- View/download PDF
13. Tunable force transduction through the Escherichia coli cell envelope.
- Author
-
Williams-Jones, Daniel P., Webby, Melissa N., Press, Cara E., Gradon, Jan M., Armstrong, Sophie R., Szczepaniak, Joanna, and Kleanthous, Colin
- Subjects
- *
ESCHERICHIA coli , *GENETIC transduction , *GRAM-negative bacteria , *ESSENTIAL nutrients , *TRANSDUCERS - Abstract
The outer membrane (OM) of Gram-negative bacteria is not energised and so processes requiring a driving force must connect to energy-transduction systems in the inner membrane (IM). Tol (Tol-Pal) and Ton are related, proton motive force-(PMF-) coupled assemblies that stabilise the OM and import essential nutrients, respectively. Both rely on proton-harvesting IM motor (stator) complexes, which are homologues of the flagellar stator unit Mot, to transduce force to the OM through elongated IM force transducer proteins, TolA and TonB, respectively. How PMF-driven motors in the IM generate mechanical work at the OM via force transducers is unknown. Here, using cryoelectron microscopy, we report the 4.3Å structure of the Escherichia coli TolQR motor complex. The structure reaffirms the 5:2 stoichiometry seen in Ton and Mot and, with motor subunits related to each other by 10 to 16° rotation, supports rotary motion as the default for these complexes. We probed the mechanism of force transduction to the OM through in vivo assays of chimeric TolA/TonB proteins where sections of their structurally divergent, periplasm-spanning domains were swapped or replaced by an intrinsically disordered sequence. We find that TolA mutants exhibit a spectrum of force output, which is reflected in their respective abilities to both stabilise the OM and import cytotoxic colicins across the OM. Our studies demonstrate that structural rigidity of force transducer proteins, rather than any particular structural form, drives the efficient conversion of PMF-driven rotary motions of 5:2 motor complexes into physiologically relevant force at the OM. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
14. DNA repair and oxidative stress defense systems in radiation-resistant Deinococcus murrayi.
- Author
-
de Groot, Arjan and Blanchard, Laurence
- Abstract
Deinococcus murrayi is a bacterium isolated from hot springs in Portugal, and named after Dr. Robert G.E. Murray in recognition of his research on the genus Deinococcus. Like other Deinococcus species, D. murrayi is extremely resistant to ionizing radiation. Repair of massive DNA damage and limitation of oxidative protein damage are two important factors contributing to the robustness of Deinococcus bacteria. Here, we identify, among others, the DNA repair and oxidative stress defense proteins in D. murrayi, and highlight special features of D. murrayi. For DNA repair, D. murrayi does not contain a standalone uracil-DNA glycosylase (Ung), but it encodes a protein in which Ung is fused to a DNA photolyase domain (PhrB). UvrB and UvrD contain large insertions corresponding to inteins. One of its endonuclease III enzymes lacks a [4Fe-4S] cluster. Deinococcus murrayi possesses a homolog of the error-prone DNA polymerase IV. Concerning oxidative stress defense, D. murrayi encodes a manganese catalase in addition to a heme catalase. Its organic hydroperoxide resistance protein Ohr is atypical because the redox active cysteines are present in a CXXC motif. These and other characteristics of D. murrayi show further diversity among Deinococcus bacteria with respect to resistance-associated mechanisms. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
15. Antimicrobial Activity and Mechanisms of Punicalagin against Vibrio parahaemolyticus
- Author
-
Hongli Liu, Wenxiu Zhu, Yue Zou, and Xiaodong Xia
- Subjects
punicalagin ,Vibrio parahaemolyticus ,cell envelope ,bacterial proteins ,Chemical technology ,TP1-1185 - Abstract
This study sought to explore the antimicrobial activity of punicalagin against V. parahaemolyticus and its potential modes of action. V. parahaemolyticus ATCC 17802 and RIMD 2210633Sm were exposed to punicalagin, and the energy production, membrane potential, and envelope permeability, as well as the interaction with cell biomolecules, were measured using a variety of fluorescent probes combined with electrophoresis and Raman spectroscopy. Punicalagin treatment disrupted the envelope integrity and induced a decrease in intracellular ATP and pH. The uptake of 1-N-phenyl-naphtylamine (NPN) demonstrated that punicalagin weakened the outer membrane. Punicalagin damaged the cytoplasmic membrane, as indicated by the membrane depolarization and the leakage of intracellular potassium ions, proteins, and nucleic acids. Electronic microscopy observation visualized the cell damage caused by punicalagin. Further, gel electrophoresis coupled with the Raman spectrum assay revealed that punicalagin affected the protein expression of V. parahaemolyticus, and there was no effect on the integrity of genomic DNA. Therefore, the cell envelope and proteins of V. parahaemolyticus were the assailable targets of punicalagin treatment. These findings suggested that punicalagin may be promising as a natural bacteriostatic agent to control the growth of V. parahaemolyticus.
- Published
- 2024
- Full Text
- View/download PDF
16. Editorial: Pathogenomics of the genus Brucella and beyond, volume II.
- Author
-
Cloeckaert, Axel, Roop II, R. Martin, Scholz, Holger C., Whatmore, Adrian M., and Zygmunt, Michel S.
- Subjects
BRUCELLA ,GENOMICS - Published
- 2024
- Full Text
- View/download PDF
17. A role for the Gram-negative outer membrane in bacterial shape determination.
- Author
-
Fivenson, Elayne M., Rohs, Patricia D. A., Vettiger, Andrea, Sardis, Marios F., Torres, Grasiela, Forchoh, Alison, and Bernhardt, Thomas G.
- Subjects
- *
BACTERIAL cell walls , *GRAM-negative bacteria , *DIFFUSION barriers , *DRUG resistance in bacteria , *CELL morphology - Abstract
The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure. However, whether the OM also plays a role in morphogenesis has remained unclear. Here, we report that changes in LPS synthesis or modification predicted to strengthen the OM can suppress the growth and shape defects of Escherichia coli mutants with reduced activity in a conserved PG synthesis machine called the Rod complex (elongasome) that is responsible for cell elongation and shape determination. Evidence is presented that OM fortification in the shape mutants restores the ability of MreB cytoskeletal filaments to properly orient the synthesis of new cell wall material by the Rod complex. Our results are therefore consistent with a role for the OM in the propagation of rod shape during growth in addition to its well-known function as a diffusion barrier promoting the intrinsic antibiotic resistance of Gram-negative bacteria. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
18. Cell Envelope Modifications Generating Resistance to Hop Beta Acids and Collateral Sensitivity to Cationic Antimicrobials in Listeria monocytogenes.
- Author
-
Goedseels, Maarten and Michiels, Chris W.
- Subjects
LISTERIA monocytogenes ,PEPTIDE antibiotics ,POLYMYXIN B ,HOPS ,GRAM-positive bacteria ,ELECTROSTATIC interaction ,MILK microbiology - Abstract
Hop beta acids (HBAs) are characteristic compounds from the hop plant that are of interest for their strong antimicrobial activity. In this work, we report a resistance mechanism against HBA in the foodborne pathogen Listeria monocytogenes. Using an evolution experiment, we isolated two HBA-resistant mutants with mutations in the mprF gene, which codes for the Multiple Peptide Resistance Factor, an enzyme that confers resistance to cationic peptides and antibiotics in several Gram-positive bacteria by lysinylating membrane phospholipids. Besides the deletion of mprF, the deletion of dltA, which mediates the alanylation of teichoic acids, resulted in increased HBA resistance, suggesting that resistance may be caused by a reduction in positive charges on the cell surface. Additionally, we found that this resistance is maintained at low pH, indicating that the resistance mechanism is not solely based on electrostatic interactions of HBA with the cell surface. Finally, we showed that the HBA-resistant mutants display collateral sensitivity to the cationic antimicrobials polymyxin B and nisin, which may open perspectives for combining antimicrobials to prevent resistance development. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
19. Antagonist Impact of Selenium-Based Nanoparticles Against Mycobacterium tuberculosis.
- Author
-
Parveen, Shagufta, Sur, Taniya, Sarkar, Soumee, and Roy, Rupak
- Abstract
One of the cardinal causes of global deaths from a single-point infectious agent has been reported to be tuberculosis (or TB). At present times, the incidence of TB cases occurs mostly due to multi-drug resistance, which is expected to boost further in the upcoming times. Accordingly, the development of alternative treatment methodologies has received significant research interest. In this regard, the application of nanoparticles has notable cognizance. The literature suggested that nanoparticles have substantial potential to be used as the delivery medium for drug injection as well as they also serve as a potential bactericidal agent. In this present study, the efficacy of the selenium nanoparticles against the inhibition of growth of Mycobacterium tuberculosis was evaluated. The obtained results indicated that the synthesized selenium nanoparticles have notable cognizance towards the inhibition of growth of Mycobacterium tuberculosis by disrupting the integrity of their cell envelope. This study thus proposes a novel approach and opens new dimensional avenues in the field of nanoparticle-induced cell disruption strategies. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
20. Small protein Cgl2215 enhances phenolic tolerance by promoting MytA activity in Corynebacterium glutamicum
- Author
-
Huawei Gu, Xinwei Hao, Ruirui Liu, Zhenkun Shi, Zehua Zhao, Fu Chen, Wenqiang Wang, Yao Wang, and Xihui Shen
- Subjects
Corynebacterium glutamicum ,Tolerance ,Phenolic compounds ,MytA ,Mycoloyltransferase ,Cell envelope ,Biology (General) ,QH301-705.5 - Abstract
Abstract Corynebacterium glutamicum is a promising chassis microorganism for the bioconversion of lignocellulosic biomass owing to its good tolerance and degradation of the inhibitors generated in lignocellulosic pretreatments. Among the identified proteins encoded by genes within the C. glutamicum genome, nearly 400 are still functionally unknown. Based on previous transcriptome analysis, we found that the hypothetical protein gene cgl2215 was highly upregulated in response to phenol, ferulic acid, and vanillin stress. The cgl2215 deletion mutant was shown to be more sensitive than the parental strain to phenolic compounds as well as other environmental factors such as heat, ethanol, and oxidative stresses. Cgl2215 interacts with C. glutamicum mycoloyltransferase A (MytA) and enhances its in vitro esterase activity. Sensitivity assays of the ΔmytA and Δcgl2215ΔmytA mutants in response to phenolic stress established that the role of Cgl2215 in phenolic tolerance was mediated by MytA. Furthermore, transmission electron microscopy (TEM) results showed that cgl2215 and mytA deletion both led to defects in the cell envelope structure of C. glutamicum, especially in the outer layer (OL) and electron-transparent layer (ETL). Collectively, these results indicate that Cgl2215 can enhance MytA activity and affect the cell envelope structure by directly interacting with MytA, thus playing an important role in resisting phenolic and other environmental stresses.
- Published
- 2022
- Full Text
- View/download PDF
21. A Barrier to Entry: Examining the Bacterial Outer Membrane and Antibiotic Resistance.
- Author
-
Ghai, Ishan
- Subjects
DRUG resistance in bacteria ,GRAM-negative bacteria ,MEMBRANE permeability (Biology) ,BACTERIAL cell walls ,HYDROPHILIC compounds ,PERIPLASM - Abstract
Gram-negative bacteria can resist antibiotics by changing the permeability via their outer membrane. These bacteria have a complex cell envelope that incorporates an outer membrane separating the periplasm from the external environment. This outer membrane contains many protein channels, also known as porins or nanopores, which mainly allow the influx of hydrophilic compounds, including antibiotics. One probable way bacteria may possibly develop antibiotic resistance is by reworking to reduce the inflow through these outer membrane porins or nanopores. The challenge now is to recognize and potentially comprehend the molecular basis of permeability via the bacterial outer membrane. To address this challenge, this assessment builds upon the author's previous work to develop a comprehensive understanding of membrane porins and their crucial role in the influx of antibiotics and solutes. Furthermore, the work aspires to investigate the bacterial response to antibiotic membrane permeability and nurture discussion toward further exploration of the physicochemical parameters governing the translocation/transport of antibiotics through bacterial membrane porins. By augmenting our understanding of these mechanisms, we may devise novel approaches to mitigate antibiotic resistance in Gram-negative bacteria. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
22. New Insights into the Physiology of the Propionate Producers Anaerotignum propionicum and Anaerotignum neopropionicum (Formerly Clostridium propionicum and Clostridium neopropionicum).
- Author
-
Baur, Tina and Dürre, Peter
- Subjects
PROPIONATES ,GRAM-negative bacteria ,LIGNOCELLULOSE ,CLOSTRIDIUM ,ETHANOL ,MICROSCOPY ,PHYSIOLOGIC strain - Abstract
Propionate is an important platform chemical that is available through petrochemical synthesis. Bacterial propionate formation is considered an alternative, as bacteria can convert waste substrates into valuable products. In this regard, research primarily focused on propionibacteria due to high propionate titers achieved from different substrates. Whether other bacteria could also be attractive producers is unclear, mostly because little is known about these strains. Therefore, two thus far less researched strains, Anaerotignum propionicum and Anaerotignum neopropionicum, were investigated with regard to their morphologic and metabolic features. Microscopic analyses revealed a negative Gram reaction despite a Gram-positive cell wall as well as surface layers for both strains. Furthermore, growth, product profiles, and the potential for propionate formation from sustainable substrates, i.e., ethanol or lignocellulosic sugars, were assessed. Results showed that both strains can oxidize ethanol to different extents. While A. propionicum only partially used ethanol, A. neopropionicum converted 28.3 mM ethanol to 16.4 mM propionate. Additionally, the ability of A. neopropionicum to produce propionate from lignocellulose-derived substrates was analyzed, leading to propionate concentrations of up to 14.5 mM. Overall, this work provides new insights into the physiology of the Anaerotignum strains, which can be used to develop effective propionate producer strains. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
23. A previously uncharacterized divisome-associated lipoprotein, DalA, is needed for normal cell division in Rhodobacterales
- Author
-
François Alberge, Bryan D. Lakey, Ryan E. Schaub, Alice C. Dohnalkova, Kimberley C. Lemmer, Joseph P. Dillard, Daniel R. Noguera, and Timothy J. Donohue
- Subjects
cell division ,Alphaproteobacteria ,peptidoglycan ,cell envelope ,lipoprotein ,Microbiology ,QR1-502 - Abstract
ABSTRACT The bacterial cell envelope is a key subcellular compartment with important roles in antibiotic resistance, nutrient acquisition, and cell morphology. We seek to gain a better understanding of proteins that contribute to the function of the cell envelope in Alphaproteobacteria. Using Rhodobacter sphaeroides, we show that a previously uncharacterized protein, RSP_1200, is an outer membrane (OM) lipoprotein that non-covalently binds peptidoglycan (PG). Using a fluorescently tagged version of this protein, we find that RSP_1200 undergoes a dynamic repositioning during the cell cycle and is enriched at the septum during cell division. We show that the position of RSP_1200 mirrors the location of FtsZ rings, leading us to propose that RSP_1200 is a newly identified component of the R. sphaeroides’ divisome. Additional support for this hypothesis includes the co-precipitation of RSP_1200 with FtsZ, the Pal protein, and several predicted PG L,D-transpeptidases. We also find that a ∆RSP_1200 mutation leads to defects in cell division, sensitivity to PG-active antibiotics, and results in the formation of OM protrusions at the septum during cell division. Based on these results, we propose to name RSP_1200 DalA (for division-associated lipoprotein A) and postulate that DalA serves as a scaffold to position or modulate the activity of PG transpeptidases that are needed to form envelope invaginations during cell division. We find that DalA homologs are present in members of the Rhodobacterales order within Alphaproteobacteria. Therefore, we propose that further analysis of this and related proteins will increase our understanding of the macromolecular machinery and proteins that participate in cell division in Gram-negative bacteria. IMPORTANCE Multi-protein complexes of the bacterial cell envelope orchestrate key processes like growth, division, biofilm formation, antimicrobial resistance, and production of valuable compounds. The subunits of these protein complexes are well studied in some bacteria, and differences in their composition and function are linked to variations in cell envelope composition, shape, and proliferation. However, some envelope protein complex subunits have no known homologs across the bacterial phylogeny. We find that Rhodobacter sphaeroides RSP_1200 is a newly identified lipoprotein (DalA) and that loss of this protein causes defects in cell division and changes the sensitivity to compounds, affecting cell envelope synthesis and function. We find that DalA forms a complex with proteins needed for cell division, binds the cell envelope polymer peptidoglycan, and colocalizes with enzymes involved in the assembly of this macromolecule. The analysis of DalA provides new information on the cell division machinery in this and possibly other Alphaproteobacteria.
- Published
- 2023
- Full Text
- View/download PDF
24. Two Accessory Proteins Govern MmpL3 Mycolic Acid Transport in Mycobacteria
- Author
-
Fay, Allison, Czudnochowski, Nadine, Rock, Jeremy M, Johnson, Jeffrey R, Krogan, Nevan J, Rosenberg, Oren, and Glickman, Michael S
- Subjects
Biochemistry and Cell Biology ,Biological Sciences ,Rare Diseases ,Biodefense ,Orphan Drug ,Infectious Diseases ,Emerging Infectious Diseases ,Tuberculosis ,2.2 Factors relating to the physical environment ,Infection ,Good Health and Well Being ,Bacterial Proteins ,Cell Membrane ,Cell Wall ,Membrane Transport Proteins ,Mycobacterium smegmatis ,Mycobacterium tuberculosis ,Mycolic Acids ,Mycobacterium ,cell envelope ,transporters ,Microbiology ,Biochemistry and cell biology ,Medical microbiology - Abstract
Mycolic acids are the signature lipid of mycobacteria and constitute an important physical component of the cell wall, a target of mycobacterium-specific antibiotics and a mediator of Mycobacterium tuberculosis pathogenesis. Mycolic acids are synthesized in the cytoplasm and are thought to be transported to the cell wall as a trehalose ester by the MmpL3 transporter, an antibiotic target for M. tuberculosis However, the mechanism by which mycolate synthesis is coupled to transport, and the full MmpL3 transport machinery, is unknown. Here, we identify two new components of the MmpL3 transport machinery in mycobacteria. The protein encoded by MSMEG_0736/Rv0383c is essential for growth of Mycobacterium smegmatis and M. tuberculosis and is anchored to the cytoplasmic membrane, physically interacts with and colocalizes with MmpL3 in growing cells, and is required for trehalose monomycolate (TMM) transport to the cell wall. In light of these findings, we propose MSMEG_0736/Rv0383c be named "TMM transport factor A", TtfA. The protein encoded by MSMEG_5308 also interacts with the MmpL3 complex but is nonessential for growth or TMM transport. However, MSMEG_5308 accumulates with inhibition of MmpL3-mediated TMM transport and stabilizes the MmpL3/TtfA complex, indicating that it may stabilize the transport system during stress. These studies identify two new components of the mycobacterial mycolate transport machinery, an emerging antibiotic target in M. tuberculosisIMPORTANCE The cell envelope of Mycobacterium tuberculosis, the bacterium that causes the disease tuberculosis, is a complex structure composed of abundant lipids and glycolipids, including the signature lipid of these bacteria, mycolic acids. In this study, we identified two new components of the transport machinery that constructs this complex cell wall. These two accessory proteins are in a complex with the MmpL3 transporter. One of these proteins, TtfA, is required for mycolic acid transport and cell viability, whereas the other stabilizes the MmpL3 complex. These studies identify two new components of the essential cell envelope biosynthetic machinery in mycobacteria.
- Published
- 2019
25. HexSDF Is Required for Synthesis of a Novel Glycolipid That Mediates Daptomycin and Bacitracin Resistance in C. difficile
- Author
-
Anthony G. Pannullo, Ziqiang Guan, Howard Goldfine, and Craig D. Ellermeier
- Subjects
two-component regulatory system ,cell envelope ,signal transduction ,gene expression ,glycolipid synthesis ,membrane biogenesis ,Microbiology ,QR1-502 - Abstract
ABSTRACT Clostridioides difficile is a Gram-positive opportunistic pathogen responsible for 250,000 hospital-associated infections, 12,000 hospital-associated deaths, and $1 billion in medical costs in the United States each year. There has been recent interest in using a daptomycin analog, surotomycin, to treat C. difficile infections. Daptomycin interacts with phosphatidylglycerol and lipid II to disrupt the membrane and halt peptidoglycan synthesis. C. difficile has an unusual lipid membrane composition, as it has no phosphatidylserine or phosphatidylethanolamine, and ~50% of its membrane is composed of glycolipids, including the unique C. difficile lipid aminohexosyl-hexosyldiradylglycerol (HNHDRG). We identified a two-component system (TCS), HexRK, that is required for C. difficile resistance to daptomycin. Using transcriptome sequencing (RNA-seq), we found that HexRK regulates expression of hexSDF, a three-gene operon of unknown function. Based on bioinformatic predictions, hexS encodes a monogalactosyldiacylglycerol synthase, hexD encodes a polysaccharide deacetylase, and hexF encodes an MprF-like flippase. Deletion of hexRK leads to a 4-fold decrease in daptomycin MIC, and that deletion of hexSDF leads to an 8- to 16-fold decrease in daptomycin MIC. The ΔhexSDF mutant is also 4-fold less resistant to bacitracin but no other cell wall-active antibiotics. Our data indicate that in the absence of HexSDF, the phospholipid membrane composition is altered. In wild-type (WT) C. difficile, the unique glycolipid HNHDRG makes up ~17% of the lipids in the membrane. However, in a ΔhexSDF mutant, HNHDRG is completely absent. While it is unclear how HNHDRG contributes to daptomycin resistance, the requirement for bacitracin resistance suggests it has a general role in cell membrane biogenesis. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. Little is understood about C. difficile membrane lipids, but a unique glycolipid, HNHDRG, has been previously identified in C. difficile and, currently, has not been identified in other organisms. Here, we show that HexSDF and HexRK are required for synthesis of HNHDRG and that production of HNHDRG impacts resistance to daptomycin and bacitracin.
- Published
- 2023
- Full Text
- View/download PDF
26. Isolation and characterization of a main porin from the outer membrane of Salinibacter ruber.
- Author
-
Farci, Domenica, Cocco, Emma, Tanas, Marta, Kirkpatrick, Joanna, Maxia, Andrea, Tamburini, Elena, Schröder, Wolfgang P., and Piano, Dario
- Subjects
- *
MEMBRANE proteins , *ADENOSINE triphosphatase , *MASS spectrometry , *HALOBACTERIUM , *NUTRIENT uptake , *MELANOPSIN , *AQUAPORINS , *CAROTENOIDS - Abstract
Salinibacter ruber is an extremophilic bacterium able to grow in high-salts environments, such as saltern crystallizer ponds. This halophilic bacterium is red-pigmented due to the production of several carotenoids and their derivatives. Two of these pigment molecules, salinixanthin and retinal, are reported to be essential cofactors of the xanthorhodopsin, a light-driven proton pump unique to this bacterium. Here, we isolate and characterize an outer membrane porin-like protein that retains salinixanthin. The characterization by mass spectrometry identified an unknown protein whose structure, predicted by AlphaFold, consists of a 8 strands beta-barrel transmembrane organization typical of porins. The protein is found to be part of a functional network clearly involved in the outer membrane trafficking. Cryo-EM micrographs showed the shape and dimensions of a particle comparable with the ones of the predicted structure. Functional implications, with respect to the high representativity of this protein in the outer membrane fraction, are discussed considering its possible role in primary functions such as the nutrients uptake and the homeostatic balance. Finally, also a possible involvement in balancing the charge perturbation associated with the xanthorhodopsin and ATP synthase activities is considered. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
27. Delivery of an Rhs‐family nuclease effector reveals direct penetration of the gram‐positive cell envelope by a type VI secretion system in Acidovorax citrulli
- Author
-
Tong‐Tong Pei, Yumin Kan, Zeng‐Hang Wang, Ming‐Xuan Tang, Hao Li, Shuangquan Yan, Yang Cui, Hao‐Yu Zheng, Han Luo, Xiaoye Liang, and Tao Dong
- Subjects
cell envelope ,cell wall ,interspecies interaction ,protein secretion ,Microbiology ,QR1-502 - Abstract
Abstract The type VI secretion system (T6SS) is a double‐tubular nanomachine widely found in gram‐negative bacteria. Its spear‐like Hcp tube is capable of penetrating a neighboring cell for cytosol‐to‐cytosol protein delivery. However, gram‐positive bacteria have been considered impenetrable to such T6SS action. Here we report that the T6SS of a plant pathogen, Acidovorax citrulli (AC), could deliver an Rhs‐family nuclease effector RhsB to kill not only gram‐negative but also gram‐positive bacteria. Using bioinformatic, biochemical, and genetic assays, we systematically identified T6SS‐secreted effectors and determined that RhsB is a crucial antibacterial effector. RhsB contains an N‐terminal PAAR domain, a middle Rhs domain, and an unknown C‐terminal domain. RhsB is subject to self‐cleavage at both its N‐ and C‐terminal domains and its secretion requires the upstream‐encoded chaperone EagT2 and VgrG3. The toxic C‐terminus of RhsB exhibits DNase activities and such toxicity is neutralized by either of the two downstream immunity proteins, RimB1 and RimB2. Deletion of rhsB significantly impairs the ability of killing Bacillus subtilis while ectopic expression of immunity proteins RimB1 or RimB2 confers protection. We demonstrate that the AC T6SS not only can effectively outcompete Escherichia coli and B. subtilis in planta but also is highly potent in killing other bacterial and fungal species. Collectively, these findings highlight the greatly expanded capabilities of T6SS in modulating microbiome compositions in complex environments.
- Published
- 2022
- Full Text
- View/download PDF
28. Molecular insights into the initiation step of the Rcs signaling pathway.
- Author
-
Watanabe, Nobuhiko and Savchenko, Alexei
- Subjects
- *
CELL envelope (Biology) , *X-ray crystallography , *BOUND states , *CRYSTAL structure , *MEMBRANE proteins - Abstract
The Rcs pathway is repressed by the inner membrane protein IgaA under non-stressed conditions. This repression is hypothesized to be relieved by the binding of the outer membrane-anchored RcsF to IgaA. However, the precise mechanism by which RcsF binding triggers the signaling remains unclear. Here, we present the 1.8 Å resolution crystal structure capturing the interaction between IgaA and RcsF. Our comparative structural analysis, examining both the bound and unbound states of the periplasmic domain of IgaA (IgaAp), highlights rotational flexibility within IgaAp. Conversely, the conformation of RcsF remains unchanged upon binding. Our in vivo and in vitro studies do not support the model of a stable complex involving RcsF, IgaAp, and RcsDp. Instead, we demonstrate that the elements beyond IgaAp play a role in the interaction between IgaA and RcsD. These findings collectively allow us to propose a potential mechanism for the signaling across the inner membrane through IgaA. [Display omitted] • Molecular details of the interaction between IgaA periplasmic domain and RcsF • Comparative structural analysis reveals rotational flexibility within IgaAp • Periplasmic domains of RcsD, IgaA and RcsF do not appear to form a stable complex Watanabe et al. report the crystal structure of the periplasmic domain of IgaA alone and in complex with RcsF, defining the interaction interface and the mode of interaction. The structural comparison of IgaA structures revealed rotational flexibility of potential functional importance toward Rcs signaling mechanism. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
29. Targeting Molecular and Cellular Mechanisms in Tuberculosis
- Author
-
Singh, Lubhan, Dua, Kamal, Kumar, Sokindra, Kumar, Deepak, Majhi, Sagarika, Dua, Kamal, editor, Löbenberg, Raimar, editor, Malheiros Luzo, Ângela Cristina, editor, Shukla, Shakti, editor, and Satija, Saurabh, editor
- Published
- 2021
- Full Text
- View/download PDF
30. Suppressor Mutations in LptF Bypass Essentiality of LptC by Forming a Six-Protein Transenvelope Bridge That Efficiently Transports Lipopolysaccharide
- Author
-
Federica A. Falchi, Rebecca J. Taylor, Sebastian J. Rowe, Elisabete C. C. M. Moura, Tiago Baeta, Cedric Laguri, Jean-Pierre Simorre, Daniel E. Kahne, Alessandra Polissi, and Paola Sperandeo
- Subjects
ABC transporter ,ATPase ,lipopolysaccharide transport ,cell envelope ,outer membrane biogenesis ,proteoliposomes ,Microbiology ,QR1-502 - Abstract
ABSTRACT Lipopolysaccharide (LPS) is an essential component of the outer membrane (OM) of many Gram-negative bacteria, providing a barrier against the entry of toxic molecules. In Escherichia coli, LPS is exported to the cell surface by seven essential proteins (LptA-G) that form a transenvelope complex. At the inner membrane, the ATP-binding cassette (ABC) transporter LptB2FG associates with LptC to power LPS extraction from the membrane and transfer to the periplasmic LptA protein, which is in complex with the OM translocon LptDE. LptC interacts both with LptB2FG and LptADE to mediate the formation of the transenvelope bridge and regulates the ATPase activity of LptB2FG. A genetic screen has previously identified suppressor mutants at a residue (R212) of LptF that are viable in the absence of LptC. Here, we present in vivo evidence that the LptF R212G mutant assembles a six-protein transenvelope complex in which LptA mediates interactions with LptF and LptD in the absence of LptC. Furthermore, we present in vitro evidence that the mutant LptB2FG complexes restore the regulation of ATP hydrolysis as it occurs in the LptB2FGC complex to achieve wild-type efficient coupling of ATP hydrolysis and LPS movement. We also show the suppressor mutations restore the wild-type levels of LPS transport both in vivo and in vitro, but remarkably, without restoring the affinity of the inner membrane complex for LptA. Based on the sensitivity of lptF suppressor mutants to selected stress conditions relative to wild-type cells, we show that there are additional regulatory functions of LptF and LptC that had not been identified. IMPORTANCE The presence of an external LPS layer in the outer membrane makes Gram-negative bacteria intrinsically resistant to many antibiotics. Millions of LPS molecules are transported to the cell surface per generation by the Lpt molecular machine made, in E. coli, by seven essential proteins. LptC is the unconventional regulatory subunit of the LptB2FGC ABC transporter, involved in coordinating energy production and LPS transport. Surprisingly, despite being essential for bacterial growth, LptC can be deleted, provided that a specific residue in the periplasmic domain of LptF is mutated and LptA is overexpressed. Here, we apply biochemical techniques to investigate the suppression mechanism. The data produced in this work disclose an unknown regulatory function of LptF in the transporter that not only expands the knowledge about the Lpt complex but can also be targeted by novel LPS biogenesis inhibitors.
- Published
- 2023
- Full Text
- View/download PDF
31. Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis
- Author
-
Xinyue Xu, Baoyu Dong, Lijun Peng, Chao Gao, Zhiqun He, Chuan Wang, and Jumei Zeng
- Subjects
Mycobacterium tuberculosis ,anti-tuberculosis drug ,cell envelope ,drug target ,lead compounds ,Microbiology ,QR1-502 - Abstract
Mycobacterium tuberculosis possesses a dynamic cell envelope, which consists of a peptidoglycan layer, a mycolic acid layer, and an arabinogalactan polysaccharide. This envelope possesses a highly complex and unique structure representing a barrier that protects and assists the growth of M. tuberculosis and allows its adaptation to the host. It regulates the immune response of the host cells, causing their damage. Therefore, the cell envelope of M. tuberculosis is an attractive target for vaccine and drug development. The emergence of multidrug-resistant as well as extensively drug resistant tuberculosis and co-infection with HIV prevented an effective control of this disease. Thus, the discovery and development of new drugs is a major keystone for TB treatment and control. This review mainly summarizes the development of drug enzymes involved in the biosynthesis of the cell wall in M. tuberculosis, and other potential drug targets in this pathway, to provide more effective strategies for the development of new drugs.
- Published
- 2022
- Full Text
- View/download PDF
32. Remodeling of the Enterococcal Cell Envelope during Surface Penetration Promotes Intrinsic Resistance to Stress
- Author
-
Yusibeska Ramos, Stephanie Sansone, Sung-Min Hwang, Tito A. Sandoval, Mengmeng Zhu, Guoan Zhang, Juan R. Cubillos-Ruiz, and Diana K. Morales
- Subjects
aggregates ,cell envelope ,daptomycin ,defensins ,Enterococcus ,glycerophospholipids ,Microbiology ,QR1-502 - Abstract
ABSTRACT Enterococcus faecalis is a normal commensal of the human gastrointestinal tract (GIT). However, upon disruption of gut homeostasis, this nonmotile bacterium can egress from its natural niche and spread to distal organs. While this translocation process can lead to life-threatening systemic infections, the underlying mechanisms remain largely unexplored. Our prior work showed that E. faecalis migration across diverse surfaces requires the formation of matrix-covered multicellular aggregates and the synthesis of exopolysaccharides, but how enterococcal cells are reprogrammed during this process is unknown. Whether surface penetration endows E. faecalis with adaptive advantages is also uncertain. Here, we report that surface penetration promotes the generation of a metabolically and phenotypically distinct E. faecalis population with an enhanced capacity to endure various forms of extracellular stress. Surface-invading enterococci demonstrated major ultrastructural alterations in their cell envelope characterized by increased membrane glycolipid content. These changes were accompanied by marked induction of specific transcriptional programs enhancing cell envelope biogenesis and glycolipid metabolism. Notably, the surface-invading population demonstrated superior tolerance to membrane-damaging antimicrobials, including daptomycin and β-defensins produced by epithelial cells. Genetic mutations impairing glycolipid biosynthesis sensitized E. faecalis to envelope stressors and reduced the ability of this bacterium to penetrate semisolid surfaces and translocate through human intestinal epithelial cell monolayers. Our study reveals that surface penetration induces distinct transcriptional, metabolic, and ultrastructural changes that equip E. faecalis with enhanced capacity to resist external stressors and thrive in its surrounding environment. IMPORTANCE Enterococcus faecalis inhabits the GIT of multiple organisms, where its establishment could be mediated by the formation of biofilm-like aggregates. In susceptible individuals, this bacterium can overgrow and breach intestinal barriers, a process that may lead to lethal systemic infections. While the formation of multicellular aggregates promotes E. faecalis migration across surfaces, little is known about the metabolic and physiological states of the enterococci encased in these surface-penetrating structures. The present study reveals that E. faecalis cells capable of migrating through semisolid surfaces genetically reprogram their metabolism toward increased cell envelope and glycolipid biogenesis, which confers superior tolerance to membrane-damaging agents. E. faecalis’s success as a pathobiont depends on its antimicrobial resistance, as well as on its rapid adaptability to overcome multiple environmental challenges. Thus, targeting adaptive genetic and/or metabolic pathways induced during E. faecalis surface penetration may be useful to better confront infections by this bacterium in the clinic.
- Published
- 2022
- Full Text
- View/download PDF
33. Feedback linking cell envelope stiffness, curvature, and synthesis enables robust rod-shaped bacterial growth.
- Author
-
al-Mosleh, Salem, Gopinathan, Ajay, Santangelo, Christian D., Kerwyn Casey Huang, and Rojas, Enrique R.
- Subjects
- *
BACTERIAL growth , *ESCHERICHIA coli , *CURVATURE , *STRAINS & stresses (Mechanics) , *CELL analysis - Abstract
Bacterial growth is remarkably robust to environmental fluctuations, yet the mechanisms of growth-rate homeostasis are poorly understood. Here, we combine theory and experiment to infer mechanisms by which Escherichia coli adapts its growth rate in response to changes in osmolarity, a fundamental physicochemical property of the environment. The central tenet of our theoretical model is that cell-envelope expansion is only sensitive to local information, such as enzyme concentrations, cell-envelope curvature, and mechanical strain in the envelope. We constrained this model with quantitative measurements of the dynamics of E. coli elongation rate and cell width after hyperosmotic shock. Our analysis demonstrated that adaptive cell-envelope softening is a key process underlying growth-rate homeostasis. Furthermore, our model correctly predicted that softening does not occur above a critical hyperosmotic shock magnitude and precisely recapitulated the elongation-rate dynamics in response to shocks with magnitude larger than this threshold. Finally, we found that, to coordinately achieve growth-rate and cell-width homeostasis, cells employ direct feedback between cell-envelope curvature and envelope expansion. In sum, our analysis points to cellular mechanisms of bacterial growth-rate homeostasis and provides a practical theoretical framework for understanding this process. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
34. Lipid Transport Across Bacterial Membranes.
- Author
-
Giacometti, Sabrina I., MacRae, Mark R., Dancel-Manning, Kristen, Bhabha, Gira, and Ekiert, Damian C.
- Abstract
The movement of lipids within and between membranes in bacteria is essential for building and maintaining the bacterial cell envelope. Moving lipids to their final destination is often energetically unfavorable and does not readily occur spontaneously. Bacteria have evolved several protein-mediated transport systems that bind specific lipid substrates and catalyze the transport of lipids across membranes and from one membrane to another. Specific protein flippases act in translocating lipids across the plasma membrane, overcoming the obstacle of moving relatively large and chemically diverse lipids between leaflets of the bilayer. Active transporters found in double-membraned bacteria have evolved sophisticated mechanisms to traffic lipids between the two membranes, including assembling to form large, multiprotein complexes that resemble bridges, shuttles, and tunnels, shielding lipids from the hydrophilic environment of the periplasm during transport. In this review, we explore our current understanding of the mechanisms thought to drive bacterial lipid transport. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
35. Effects of the antimicrobial glabridin on membrane integrity and stress response activation in Listeria monocytogenes
- Author
-
Bombelli, Alberto, Araya-Cloutier, Carla, Boeren, Sjef, Vincken, Jean Paul, Abee, Tjakko, den Besten, Heidy M.W., Bombelli, Alberto, Araya-Cloutier, Carla, Boeren, Sjef, Vincken, Jean Paul, Abee, Tjakko, and den Besten, Heidy M.W.
- Abstract
Glabridin is a prenylated isoflavan which can be extracted from liquorice roots and has shown antimicrobial activity against foodborne pathogens and spoilage microorganisms. However, its application may be hindered due to limited information about its mode of action. In this study, we aimed to investigate the mode of action of glabridin using a combined phenotypic and proteomic approach on Listeria monocytogenes. Fluorescence and transmission electron microscopy of cells exposed to glabridin showed membrane permeabilization upon treatment with lethal concentrations of glabridin. Comparative proteomics analysis of control cells and cells exposed to sub-lethal concentrations of glabridin showed upregulation of proteins related to the two-component systems LiaSR and VirRS, confirming cell envelope damage during glabridin treatment. Additional upregulation of SigmaB regulon members signified activation of the general stress response in L. monocytogenes during this treatment. In line with the observed upregulation of cell envelope and general stress response proteins, sub-lethal treatment of glabridin induced (cross)protection against lethal heat and low pH stress and against antimicrobials such as nisin and glabridin itself. Overall, this study sheds light on the mode of action of glabridin and activation of the main stress responses to this antimicrobial isoflavan and highlights possible implications of its use as a naturally derived antimicrobial compound.
- Published
- 2024
36. Insight into the outer membrane asymmetry of P. aeruginosa and the role of MlaA in modulating the lipidic composition, mechanical, biophysical, and functional membrane properties of the cell envelope.
- Author
-
Kaur M, Mozaheb N, Paiva TO, Herent M-F, Goormaghtigh F, Paquot A, Terrasi R, Mignolet E, Décout J-L, Lorent JH, Larondelle Y, Muccioli GG, Quetin-Leclercq J, Dufrêne YF, and Mingeot-Leclercq M-P
- Subjects
- Bacterial Outer Membrane metabolism, Bacterial Outer Membrane chemistry, Membrane Lipids metabolism, Membrane Lipids chemistry, Cell Membrane metabolism, Cell Membrane chemistry, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents chemistry, Anti-Bacterial Agents metabolism, Glycerophospholipids metabolism, Glycerophospholipids chemistry, Bacterial Proteins metabolism, Bacterial Proteins genetics, Bacterial Proteins chemistry, Cell Wall metabolism, Cell Wall chemistry, Bacterial Outer Membrane Proteins metabolism, Bacterial Outer Membrane Proteins genetics, Bacterial Outer Membrane Proteins chemistry, Pseudomonas aeruginosa metabolism, Pseudomonas aeruginosa physiology, Pseudomonas aeruginosa chemistry, Pseudomonas aeruginosa genetics, Lipopolysaccharides metabolism, Lipopolysaccharides chemistry
- Abstract
In Gram-negative bacteria, the outer membrane (OM) is asymmetric, with lipopolysaccharides (LPS) in the outer leaflet and glycerophospholipids (GPLs) in the inner leaflet. The asymmetry is maintained by the Mla system (MlaA-MlaBCDEF), which contributes to lipid homeostasis by removing mislocalized GPLs from the outer leaflet of the OM. Here, we ascribed how Pseudomonas aeruginosa ATCC 27853 coordinately regulates pathways to provide defense against the threats posed by the deletion of mlaA . Especially, we explored (i) the effects on membrane lipid composition including LPS, GPLs, and lysophospholipids, (ii) the biophysical properties of the OM such as stiffness and fluidity, and (iii) the impact of these changes on permeability, antibiotic susceptibility, and membrane vesicles (MVs) generation. Deletion of mlaA induced an increase in total GPLs and a decrease in LPS level while also triggering alterations in lipid A structures (arabinosylation and palmitoylation), likely to be induced by a two-component system (PhoPQ-PmrAB). Altered lipid composition may serve a physiological purpose in regulating the mechanobiological and functional properties of P. aerugino sa. We demonstrated an increase in cell stiffness without alteration of turgor pressure and inner membrane (IM) fluidity in ∆ mlaA . In addition, membrane vesiculation increased without any change in OM/IM permeability. An amphiphilic aminoglycoside derivative (3',6-dinonyl neamine) that targets P. aeruginosa membranes induced an opposite effect on ∆ mlaA strain with a trend toward a return to the situation observed for the WT strain. Efforts dedicated to understanding the crosstalk between the OM lipid composition, and the mechanical behavior of bacterial envelope, is one needed step for designing new targets or new drugs to fight P. aeruginosa infections.IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium responsible for severe hospital-acquired infections. The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier against toxic compounds, and therefore, compromising this structure could increase sensitivity to antibiotics. The OM is asymmetric with the highly packed lipopolysaccharide monolayer at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla pathway resulting in the retrograde transport of glycerophospholipids from the OM to the inner membrane. In this study, we show that deleting mlaA , the membrane component of Mla system located at the OM, affects the mechanical and functional properties of P. aeruginosa cell envelope. Our results provide insights into the role of MlaA, involved in the Mla transport pathway in P. aeruginosa ., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
37. Nisin resistance is increased through GtcA mutation induced loss of cell wall teichoic acid N-acetylglucosamine modifications in Listeria monocytogenes.
- Author
-
Mandinyenya T, Wambui J, Muchaamba F, Stevens MJA, and Tasara T
- Abstract
Nisin resistance development is one of food safety challenges posed by Listeria monocytogenes, an important foodborne pathogen that causes human listeriosis. The GtcA flippase enzyme is functionally crucial in two separate pathways that glycosylate cell envelope wall teichoic acids (WTA) with N-acetylglucosamine (NAG) and lipoteichoic acids (LTA) with galactose, respectively. This study investigated phenotypic roles and molecular mechanisms underlying GtcA involvement in L. monocytogenes nisin resistance. A GtcA
A65V mutation was linked with increased nisin resistance in a food processing environment associated L. monocytogenes strain. Examination of nisin stress survival and growth phenotypes among L. monocytogenes gtcA mutants in different genetic backgrounds showed that GtcA function promoted sensitivity and loss of its function through genetic deletion (ΔgtcA) and a natural GtcAA65V mutation increased nisin resistance. Individual contributions of GtcA WTA NAG and LTA galactose glycosylation functions to nisin resistance modulation were examined through nisin sensitivity analysis of genetic deletion mutants and L. monocytogenes strains complemented using functionally altered GtcA mutants. This revealed WTA NAG glycosylation to be the main functional mechanism that determines GtcA dependent nisin phenotypic sensitization. An examination for mechanisms underlying GtcA involvement in nisin sensitivity revealed that the loss of GtcA function induces changes in the cell envelope carbohydrate composition profiles reducing cell surface hydrophobicity. Overall, our results showed that cell envelope WTA NAG glycosylation promotes nisin susceptibility through facilitation of hydrophobic interactions between nisin and the Listeria cell envelope. There may be practical implications from our observations since nisin resistance could be gained in food associated L. monocytogenes strains that develop phage resistance through acquisition of mutations in genes that cause loss of cell envelope WTA NAG modifications., Competing Interests: Declaration of competing interest None., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
38. Complex Diffusion in Bacteria
- Author
-
Bohrer, Christopher H., Xiao, Jie, Crusio, Wim E., Series Editor, Dong, Haidong, Series Editor, Radeke, Heinfried H., Series Editor, Rezaei, Nima, Series Editor, Duménil, Guillaume, editor, and van Teeffelen, Sven, editor
- Published
- 2020
- Full Text
- View/download PDF
39. Phage resistance profiling identifies new genes required for biogenesis and modification of the corynebacterial cell envelope
- Author
-
Amelia C McKitterick and Thomas G Bernhardt
- Subjects
Corynebacterium ,bacteriophage ,mycolic acid ,cell envelope ,arabinogalactan ,porin ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Bacteria of the order Corynebacteriales including pathogens such as Mycobacterium tuberculosis and Corynebacterium diphtheriae are characterized by their complex, multi-layered envelope. In addition to a peptidoglycan layer, these organisms possess an additional polysaccharide layer made of arabinogalactan and an outer membrane layer composed predominantly of long-chain fatty acids called mycolic acids. This so-called mycolata envelope structure is both a potent barrier against antibiotic entry into cells and a target of several antibacterial therapeutics. A better understanding of the mechanisms underlying mycolata envelope assembly therefore promises to reveal new ways of disrupting this unique structure for the development of antibiotics and antibiotic potentiators. Because they engage with receptors on the cell surface during infection, bacteriophages have long been used as tools to uncover important aspects of host envelope assembly. However, surprisingly little is known about the interactions between Corynebacteriales phages and their hosts. We therefore made use of the phages Cog and CL31 that infect Corynebacterium glutamicum (Cglu), a model member of the Corynebacteriales, to discover host factors important for phage infection. A high-density transposon library of Cglu was challenged with these phages followed by transposon sequencing to identify resistance loci. The analysis identified an important role for mycomembrane proteins in phage infection as well as components of the arabinogalactan and mycolic acid synthesis pathways. Importantly, the approach also implicated a new gene (cgp_0396) in the process of arabinogalactan modification and identified a conserved new factor (AhfA, Cpg_0475) required for mycolic acid synthesis in Cglu.
- Published
- 2022
- Full Text
- View/download PDF
40. Genetic Screens Identify Additional Genes Implicated in Envelope Remodeling during the Engulfment Stage of Bacillus subtilis Sporulation
- Author
-
Helena Chan, Najwa Taib, Michael C. Gilmore, Ahmed M. T. Mohamed, Kieran Hanna, Johana Luhur, Hieu Nguyen, Elham Hafiz, Felipe Cava, Simonetta Gribaldo, David Rudner, and Christopher D. A. Rodrigues
- Subjects
sporulation ,engulfment ,peptidoglycan ,peptidoglycan remodeling ,cell envelope ,morphogenesis ,Microbiology ,QR1-502 - Abstract
ABSTRACT During bacterial endospore formation, the developing spore is internalized into the mother cell through a phagocytic-like process called engulfment, which involves synthesis and hydrolysis of peptidoglycan. Engulfment peptidoglycan hydrolysis requires the widely conserved and well-characterized DMP complex, composed of SpoIID, SpoIIM, and SpoIIP. In contrast, although peptidoglycan synthesis has been implicated in engulfment, the protein players involved are less well defined. The widely conserved SpoIIIAH-SpoIIQ interaction is also required for engulfment efficiency, functioning like a ratchet to promote membrane migration around the forespore. Here, we screened for additional factors required for engulfment using transposon sequencing in Bacillus subtilis mutants with mild engulfment defects. We discovered that YrvJ, a peptidoglycan hydrolase, and the MurA paralog MurAB, involved in peptidoglycan precursor synthesis, are required for efficient engulfment. Cytological analyses suggest that both factors are important for engulfment when the DMP complex is compromised and that MurAB is additionally required when the SpoIIIAH-SpoIIQ ratchet is abolished. Interestingly, despite the importance of MurAB for sporulation in B. subtilis, phylogenetic analyses of MurA paralogs indicate that there is no correlation between sporulation and the number of MurA paralogs and further reveal the existence of a third MurA paralog, MurAC, within the Firmicutes. Collectively, our studies identify two new factors that are required for efficient envelop remodeling during sporulation and highlight the importance of peptidoglycan precursor synthesis for efficient engulfment in B. subtilis and likely other endospore-forming bacteria. IMPORTANCE In bacteria, cell envelope remodeling is critical for cell growth and division. This is also the case during the development of bacteria into highly resistant endospores (spores), known as sporulation. During sporulation, the developing spore becomes internalized inside the mother cell through a phagocytic-like process called engulfment, which is essential to form the cell envelope of the spore. Engulfment involves both the synthesis and hydrolysis of peptidoglycan and the stabilization of migrating membranes around the developing spore. Importantly, although peptidoglycan synthesis has been implicated during engulfment, the specific genes that contribute to this molecular element of engulfment have remained unclear. Our study identifies two new factors that are required for efficient envelope remodeling during engulfment and emphasizes the importance of peptidoglycan precursor synthesis for efficient engulfment in the model organism Bacillus subtilis and likely other endospore-forming bacteria. Finally, our work highlights the power of synthetic screens to reveal additional genes that contribute to essential processes during sporulation.
- Published
- 2022
- Full Text
- View/download PDF
41. Cell Envelope Modifications Generating Resistance to Hop Beta Acids and Collateral Sensitivity to Cationic Antimicrobials in Listeria monocytogenes
- Author
-
Maarten Goedseels and Chris W. Michiels
- Subjects
Listeria monocytogenes ,hop beta acids ,natural antimicrobial ,collateral sensitivity ,cell envelope ,MprF ,Biology (General) ,QH301-705.5 - Abstract
Hop beta acids (HBAs) are characteristic compounds from the hop plant that are of interest for their strong antimicrobial activity. In this work, we report a resistance mechanism against HBA in the foodborne pathogen Listeria monocytogenes. Using an evolution experiment, we isolated two HBA-resistant mutants with mutations in the mprF gene, which codes for the Multiple Peptide Resistance Factor, an enzyme that confers resistance to cationic peptides and antibiotics in several Gram-positive bacteria by lysinylating membrane phospholipids. Besides the deletion of mprF, the deletion of dltA, which mediates the alanylation of teichoic acids, resulted in increased HBA resistance, suggesting that resistance may be caused by a reduction in positive charges on the cell surface. Additionally, we found that this resistance is maintained at low pH, indicating that the resistance mechanism is not solely based on electrostatic interactions of HBA with the cell surface. Finally, we showed that the HBA-resistant mutants display collateral sensitivity to the cationic antimicrobials polymyxin B and nisin, which may open perspectives for combining antimicrobials to prevent resistance development.
- Published
- 2023
- Full Text
- View/download PDF
42. RETRACTED ARTICLE: Antagonist Impact of Selenium-Based Nanoparticles Against Mycobacterium tuberculosis
- Author
-
Parveen, Shagufta, Sur, Taniya, Sarkar, Soumee, and Roy, Rupak
- Published
- 2023
- Full Text
- View/download PDF
43. A Biological Signature for the Inhibition of Outer Membrane Lipoprotein Biogenesis
- Author
-
Kelly M. Lehman, Hannah C. Smith, and Marcin Grabowicz
- Subjects
antibiotics ,cell envelope ,lipoproteins ,outer membrane ,stress response ,Microbiology ,QR1-502 - Abstract
ABSTRACT The outer membrane (OM) of Gram-negative bacteria is an essential organelle that acts as a formidable barrier to antibiotics. Increasingly prevalent resistance to existing drugs has exacerbated the need for antibiotic discovery efforts targeting the OM. Acylated proteins, known as lipoproteins, are essential in every pathway needed to build the OM. The central role of OM lipoproteins makes their biogenesis a uniquely attractive therapeutic target, but it also complicates in vivo identification of on-pathway inhibitors, as inhibition of OM lipoprotein biogenesis broadly disrupts OM assembly. Here, we use genetics to probe the eight essential proteins involved in OM lipoprotein maturation and trafficking. We define a biological signature consisting of three simple assays that can characteristically identify OM lipoprotein biogenesis defects in vivo. We find that several known chemical inhibitors of OM lipoprotein biogenesis conform to the biological signature. We also examine MAC13243, a proposed inhibitor of OM lipoprotein biogenesis, and find that it fails to conform to the biological signature. Indeed, we demonstrate that MAC13243 activity relies entirely on a target outside of the OM lipoprotein biogenesis pathway. Hence, our signature offers simple tools to easily assess whether antibiotic lead compounds target an essential pathway that is the hub of OM assembly. IMPORTANCE Gram-negative bacteria have an outer membrane, which acts as a protective barrier and excludes many antibiotics. The limited number of antibiotics active against Gram-negative bacteria, along with rising rates of antibiotic resistance, highlights the need for efficient antibiotic discovery efforts. Unfortunately, finding the target of lead compounds, especially ones targeting outer membrane construction, remains difficult. The hub of outer membrane construction is the lipoprotein biogenesis pathway. We show that defects in this pathway result in a signature cellular response that can be used to quickly and accurately validate pathway inhibitors. Indeed, we found that MAC13243, a compound previously proposed to target outer membrane lipoprotein biogenesis, does not fit the signature, and we show that it instead targets an entirely different cellular pathway. Our findings offer a streamlined approach to the discovery and validation of lead antibiotics against a conserved and essential pathway in Gram-negative bacteria.
- Published
- 2022
- Full Text
- View/download PDF
44. Genome-Wide Identification of Pseudomonas aeruginosa Genes Important for Desiccation Tolerance on Inanimate Surfaces
- Author
-
Sardar Karash and Timothy L. Yahr
- Subjects
Pseudomonas aeruginosa ,desiccation ,Tn-seq ,stress responses ,cell envelope ,pyrimidine ,Microbiology ,QR1-502 - Abstract
ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen prevalent in the environment and in health care settings. Transmission in the health care setting occurs through human-human interactions and/or contact with contaminated surfaces. Moist surfaces such as respirators, sink and tub drains, and even disinfectants can serve as reservoirs. Dry surfaces such as plastic and stainless steel could also serve as a reservoir but would necessitate some degree of tolerance to desiccation. Using an assay to measure P. aeruginosa tolerance to desiccation on plastic and stainless-steel surfaces, we found that only 0.05 to 0.1% of the desiccated cells could be recovered 24 h postdesiccation. We took advantage of the strong selection imposed by desiccation to identify genes important for tolerance using Tn-seq. A highly saturated Tn-seq library was desiccated on plastic and stainless-steel surfaces. NexGen sequencing of the recovered cells identified 97 genes important for survival. Comparing cells desiccated under low- and high-nutrient conditions allowed for differentiation of genes important for desiccation tolerance. The 53 genes identified in the latter analysis are involved in maintenance of cell envelope integrity, purine and pyrimidine biosynthesis, tricarboxylic acid (TCA) cycle, and the hydrolysis of misfolded proteins. The Tn-seq findings were validated by competition experiments with wild-type (WT) cells and select Tn insertion mutants. Mutants lacking carB and surA demonstrated the largest fitness defects, indicating that pyrimidine biosynthesis and outer membrane integrity are essential for desiccation tolerance. Increased understanding of desiccation tolerance could provide insight into approaches to control environmental reservoirs of P. aeruginosa. IMPORTANCE Health care-associated infections (HAIs) caused by Pseudomonas aeruginosa result in significant morbidity and mortality and are a significant economic burden. Moist environments that promote biofilm formation are an important reservoir for P. aeruginosa. Dry environments may also serve as a reservoir but would require some degree of desiccation tolerance. Here, we took a genome-wide approach to identify genes important for desiccation tolerance on plastic and stainless-steel surfaces. Genes involved in assembly of outer membrane proteins and pyrimidine biosynthesis were particularly important. Strains lacking these functions were unable to tolerate surface desiccation. These findings suggest that inhibitors of these pathways could be used to prevent P. aeruginosa survival on dry surfaces.
- Published
- 2022
- Full Text
- View/download PDF
45. Peptidoglycan Recycling Promotes Outer Membrane Integrity and Carbapenem Tolerance in Acinetobacter baumannii
- Author
-
Nowrosh Islam, Misha I. Kazi, Katie N. Kang, Jacob Biboy, Joe Gray, Feroz Ahmed, Richard D. Schargel, Cara C. Boutte, Tobias Dörr, Waldemar Vollmer, and Joseph M. Boll
- Subjects
tolerance ,peptidoglycan ,outer membrane ,cell envelope ,carbapenems ,Gram-negative bacteria ,Microbiology ,QR1-502 - Abstract
ABSTRACT β-Lactam antibiotics exploit the essentiality of the bacterial cell envelope by perturbing the peptidoglycan layer, typically resulting in rapid lysis and death. Many Gram-negative bacteria do not lyse but instead exhibit “tolerance,” the ability to sustain viability in the presence of bactericidal antibiotics for extended periods. Antibiotic tolerance has been implicated in treatment failure and is a stepping-stone in the acquisition of true resistance, and the molecular factors that promote intrinsic tolerance are not well understood. Acinetobacter baumannii is a critical-threat nosocomial pathogen notorious for its ability to rapidly develop multidrug resistance. Carbapenem β-lactam antibiotics (i.e., meropenem) are first-line prescriptions to treat A. baumannii infections, but treatment failure is increasingly prevalent. Meropenem tolerance in Gram-negative pathogens is characterized by morphologically distinct populations of spheroplasts, but the impact of spheroplast formation is not fully understood. Here, we show that susceptible A. baumannii clinical isolates demonstrate tolerance to high-level meropenem treatment, form spheroplasts upon exposure to the antibiotic, and revert to normal growth after antibiotic removal. Using transcriptomics and genetic screens, we show that several genes associated with outer membrane integrity maintenance and efflux promote tolerance, likely by limiting entry into the periplasm. Genes associated with peptidoglycan homeostasis in the periplasm and cytoplasm also answered our screen, and their disruption compromised cell envelope barrier function. Finally, we defined the enzymatic activity of the tolerance determinants penicillin-binding protein 7 (PBP7) and ElsL (a cytoplasmic ld-carboxypeptidase). These data show that outer membrane integrity and peptidoglycan recycling are tightly linked in their contribution to A. baumannii meropenem tolerance. IMPORTANCE Carbapenem treatment failure associated with “superbug” infections has rapidly increased in prevalence, highlighting the urgent need to develop new therapeutic strategies. Antibiotic tolerance can directly lead to treatment failure but has also been shown to promote the acquisition of true resistance within a population. While some studies have addressed mechanisms that promote tolerance, factors that underlie Gram-negative bacterial survival during carbapenem treatment are not well understood. Here, we characterized the role of peptidoglycan recycling in outer membrane integrity maintenance and meropenem tolerance in A. baumannii. These studies suggest that the pathogen limits antibiotic concentrations in the periplasm and highlight physiological processes that could be targeted to improve antimicrobial treatment.
- Published
- 2022
- Full Text
- View/download PDF
46. A Barrier to Entry: Examining the Bacterial Outer Membrane and Antibiotic Resistance
- Author
-
Ishan Ghai
- Subjects
antibiotic uptake ,antibiotic resistance ,cell envelope ,Ion-Channels ,electrophysiology ,membrane influx ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Gram-negative bacteria can resist antibiotics by changing the permeability via their outer membrane. These bacteria have a complex cell envelope that incorporates an outer membrane separating the periplasm from the external environment. This outer membrane contains many protein channels, also known as porins or nanopores, which mainly allow the influx of hydrophilic compounds, including antibiotics. One probable way bacteria may possibly develop antibiotic resistance is by reworking to reduce the inflow through these outer membrane porins or nanopores. The challenge now is to recognize and potentially comprehend the molecular basis of permeability via the bacterial outer membrane. To address this challenge, this assessment builds upon the author’s previous work to develop a comprehensive understanding of membrane porins and their crucial role in the influx of antibiotics and solutes. Furthermore, the work aspires to investigate the bacterial response to antibiotic membrane permeability and nurture discussion toward further exploration of the physicochemical parameters governing the translocation/transport of antibiotics through bacterial membrane porins. By augmenting our understanding of these mechanisms, we may devise novel approaches to mitigate antibiotic resistance in Gram-negative bacteria.
- Published
- 2023
- Full Text
- View/download PDF
47. New Insights into the Physiology of the Propionate Producers Anaerotignum propionicum and Anaerotignum neopropionicum (Formerly Clostridium propionicum and Clostridium neopropionicum)
- Author
-
Tina Baur and Peter Dürre
- Subjects
Anaerotignum propionicum ,Anaerotignum neopropionicum ,cell envelope ,growth parameters ,lignocellulosic hydrolysates ,ethanol oxidation ,Biology (General) ,QH301-705.5 - Abstract
Propionate is an important platform chemical that is available through petrochemical synthesis. Bacterial propionate formation is considered an alternative, as bacteria can convert waste substrates into valuable products. In this regard, research primarily focused on propionibacteria due to high propionate titers achieved from different substrates. Whether other bacteria could also be attractive producers is unclear, mostly because little is known about these strains. Therefore, two thus far less researched strains, Anaerotignum propionicum and Anaerotignum neopropionicum, were investigated with regard to their morphologic and metabolic features. Microscopic analyses revealed a negative Gram reaction despite a Gram-positive cell wall as well as surface layers for both strains. Furthermore, growth, product profiles, and the potential for propionate formation from sustainable substrates, i.e., ethanol or lignocellulosic sugars, were assessed. Results showed that both strains can oxidize ethanol to different extents. While A. propionicum only partially used ethanol, A. neopropionicum converted 28.3 mM ethanol to 16.4 mM propionate. Additionally, the ability of A. neopropionicum to produce propionate from lignocellulose-derived substrates was analyzed, leading to propionate concentrations of up to 14.5 mM. Overall, this work provides new insights into the physiology of the Anaerotignum strains, which can be used to develop effective propionate producer strains.
- Published
- 2023
- Full Text
- View/download PDF
48. FtsK and SpoIIIE, coordinators of chromosome segregation and envelope remodeling in bacteria.
- Author
-
Chan, Helena, Mohamed, Ahmed M.T., Grainge, Ian, and Rodrigues, Christopher D.A.
- Subjects
- *
CHROMOSOME segregation , *BACTERIAL DNA , *CYTOKINESIS , *GRAM-negative bacteria , *CELL separation , *BACILLUS subtilis - Abstract
The translocation of DNA during bacterial cytokinesis is mediated by the SpoIIIE/FtsK family of proteins. These proteins ensure efficient chromosome segregation into sister cells by ATP-driven translocation of DNA and they control chromosome dimer resolution. How FtsK/SpoIIIE mediate chromosome translocation during cytokinesis in Gram-positive and Gram-negative organisms has been the subject of debate. Studies on FtsK in Escherichia coli , and recent work on SpoIIIE in Bacillus subtilis , have identified interactions between each translocase and the division machinery, supporting the idea that SpoIIIE and FtsK coordinate the final steps of cytokinesis with completion of chromosome segregation. Here we summarize and discuss the view that SpoIIIE and FtsK play similar roles in coordinating cytokinesis with chromosome segregation, during growth and differentiation. A recent study shows that SpoIIIE interacts with proteins that are connected to the cell envelope during spore development. FtsK appears to interact with proteins within all layers of the Gram-negative cell envelope. SpoIIIE and FtsK are both multifunctional and they coordinate cell-envelope remodeling with chromosome segregation. Both SpoIIIE and FtsK likely regulate peptidoglycan remodeling at the septum. Advances in cryo-electron microscopy may reveal how FtsK and SpoIIIE complexes are organized during cytokinesis. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
49. Prevalent association with the bacterial cell envelope of prokaryotic expansins revealed by bioinformatics analysis.
- Author
-
de Sandozequi, Andrés, Salazar‐Cortés, Juan José, Tapia‐Vázquez, Irán, and Martínez‐Anaya, Claudia
- Abstract
Expansins are a group of proteins from diverse organisms from bacteria to plants. Although expansins show structural conservation, their biological roles seem to differ among kingdoms. In plants, these proteins remodel the cell wall during plant growth and other processes. Contrarily, determination of bacterial expansin activity has proven difficult, although genetic evidence of bacterial mutants indicates that expansins participate in bacteria–plant interactions. Nevertheless, a large proportion of expansin genes are found in the genomes of free‐living bacteria, suggesting roles that are independent of the interaction with living plants. Here, we analyzed all available sequences of prokaryotic expansins for correlations between surface electric charge, extra protein modules, and sequence motifs for association with the bacteria exterior after export. Additionally, information on the fate of protein after translocation across the membrane also points to bacterial cell association of expansins through six different mechanisms, such as attachment of a lipid molecule for membrane anchoring in diderm species or covalent linking to the peptidoglycan layer in monoderms such as the Bacilliales. Our results have implications for expansin function in the context of bacteria–plant interactions and also for free‐living species in which expansins might affect cell–cell or cell–substrate interaction properties and indicate the need to re‐examine the roles currently considered for these proteins. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
50. Force-Generation by the Trans-Envelope Tol-Pal System.
- Author
-
Webby, Melissa N., Williams-Jones, Daniel P., Press, Cara, and Kleanthous, Colin
- Subjects
GRAM-negative bacteria ,CELL division ,PROTEIN models ,STATORS ,VIRAL envelope proteins ,BACTERIOPHAGES - Abstract
The Tol-Pal system spans the cell envelope of Gram-negative bacteria, transducing the potential energy of the proton motive force (PMF) into dissociation of the TolB-Pal complex at the outer membrane (OM), freeing the lipoprotein Pal to bind the cell wall. The primary physiological role of Tol-Pal is to maintain OM integrity during cell division through accumulation of Pal molecules at division septa. How the protein complex couples the PMF at the inner membrane into work at the OM is unknown. The effectiveness of this trans-envelope energy transduction system is underscored by the fact that bacteriocins and bacteriophages co-opt Tol-Pal as part of their import/infection mechanisms. Mechanistic understanding of this process has been hindered by a lack of structural data for the inner membrane TolQ-TolR stator, of its complexes with peptidoglycan (PG) and TolA, and of how these elements combined power events at the OM. Recent studies on the homologous stators of Ton and Mot provide a starting point for understanding how Tol-Pal works. Here, we combine ab initio protein modeling with previous structural data on sub-complexes of Tol-Pal as well as mutagenesis, crosslinking, co-conservation analysis and functional data. Through this composite pooling of in silico , in vitro , and in vivo data, we propose a mechanism for force generation in which PMF-driven rotary motion within the stator drives conformational transitions within a long TolA helical hairpin domain, enabling it to reach the TolB-Pal complex at the OM. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.