Golubchikov, Daniil, Safronova, Tatiana V., Nemygina, Elizaveta, Shatalova, Tatiana B., Tikhomirova, Irina N., Roslyakov, Ilya V., Khayrutdinova, Dinara, Platonov, Vadim, Boytsova, Olga, Kaimonov, Maksim, Firsov, Denis A., and Lyssenko, Konstantin A.
Synthesis from mixed-anionic aqueous solutions is a novel approach to obtain active powders for bioceramics production in the CaO-SiO2-P2O5-Na2O system. In this work, powders were prepared using precipitation from aqueous solutions of the following precursors: Ca(NO3)2 and Na2HPO4 (CaP); Ca(NO3)2 and Na2SiO3 (CaSi); and Ca(NO3)2, Na2HPO4 and Na2SiO3 (CaPSi). Phase composition of the CaP powder included brushite CaHPO4‧2H2O and the CaSi powder included calcium silicate hydrate. Phase composition of the CaPSi powder consisted of the amorphous phase (presumably containing hydrated quasi-amorphous calcium phosphate and calcium silicate phase). All synthesized powders contained NaNO3 as a by-product. The total weight loss after heating up to 1000 °C for the CaP sample—28.3%, for the CaSi sample—38.8% and for the CaPSi sample was 29%. Phase composition of the ceramic samples after the heat treatment at 1000 °C based on the CaP powder contained β-NaCaPO4 and β-Ca2P2O7, the ceramic samples based on the CaSi powder contained α-CaSiO3 and Na2Ca2Si2O7, while the ceramics obtained from the CaPSi powder contained sodium rhenanite β-NaCaPO4, wollastonite α-CaSiO3 and Na3Ca6(PO4)5. The densest ceramic sample was obtained in CaO-SiO2-P2O5-Na2O system at 900 °C from the CaP powder (ρ = 2.53 g/cm3), while the other samples had densities of 0.93 g/cm3 (CaSi) and 1.22 (CaPSi) at the same temperature. The ceramics prepared in this system contain biocompatible and bioresorbable phases, and can be recommended for use in medicine for bone-defect treatment. [ABSTRACT FROM AUTHOR]