1. Adaptive Differences in Cellular and Behavioral Responses to Circadian Disruption between C57BL/6 and BALB/c Strains.
- Author
-
Ma, Changxiao, Li, Haonan, Li, Wenyu, Yang, Guangrui, and Chen, Lihong
- Subjects
- *
LABORATORY mice , *GENE expression , *BIOLUMINESCENCE , *CIRCADIAN rhythms , *ANIMAL models in research , *LUNGS - Abstract
The regulation of the mammalian circadian clock is largely dependent on heredity. In model animals for circadian rhythm studies, C57BL/6 and BALB/c mice exhibit considerable differences in their adaptation to circadian disruption, yet deeper comparisons remain unexplored. Here, we have established embryonic fibroblast cells derived from C57BL/6 mice (MEF) and BALB/c (BALB/3T3) mice, which have been transfected with the Bmal1 promoter-driven luciferase (Bmal1-Luc) reporter gene. Next, dexamethasone was applied for various cyclic stimulations, which revealed that Bmal1 bioluminescence of MEF cells was entrained to 24 to 26 h cycles, whereas BALB/3T3 cells have a wider range (22 to 28 h) with lower amplitudes. Behaviorally, BALB/c mice swiftly adapted to a 6-h advance light/dark cycle, unlike C57BL/6 mice. Furthermore, we found the expression of the circadian rhythm gene Npas2 in BALB/c mice is significantly lower than that in C57BL/6 mice. This observation is consistent with the differentially expressed genes (DEGs) in the intestine and lung tissues of C57BL/6 and BALB/c mice, based on the RNA-seq datasets downloaded from the Gene Expression Omnibus (GEO). In summary, our study uncovers that BALB/c mice possess greater resilience in circadian rhythm than C57BL/6 mice, both cellular and behaviorally, identifying potential genes underlying this difference. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF