1. Maximizing Cumulative Trypsin Activity with Calcium at Elevated Temperature for Enhanced Bottom-Up Proteome Analysis.
- Author
-
Nickerson, Jessica L. and Doucette, Alan A.
- Subjects
- *
PROTEOMICS , *TRYPSIN , *HIGH temperatures , *PROTEOLYSIS , *CALCIUM channels , *PEPTIDES , *CALCIUM ions - Abstract
Simple Summary: Trypsin is frequently employed to cleave proteins ahead of mass spectrometry characterization. Traditionally, enzyme digestion involves overnight incubation of proteins at 37 °C, which is time consuming though still may yield poor digestion efficiency. While raising the temperature should theoretically accelerate the digestion, it also destabilizes the enzyme and promotes trypsin de-activation. We therefore questioned whether elevated temperature is beneficial for improving tryptic digestion. Here, we quantify protein digestion kinetics at elevated temperatures for calcium-stabilized trypsin and enforce the critical importance of calcium ions to preserve the enzyme. We quantitatively demonstrate that 1 h at 47 °C provides a superior digest when compared to conventional (overnight, 37 °C) processing of the proteome. The practical impact of our enhanced digestion protocol is shown through bottom-up mass spectrometry analysis of a complex proteome mixture. Bottom-up proteomics relies on efficient trypsin digestion ahead of MS analysis. Prior studies have suggested digestion at elevated temperature to accelerate proteolysis, showing an increase in the number of MS-identified peptides. However, improved sequence coverage may be a consequence of partial digestion, as higher temperatures destabilize and degrade the enzyme, causing enhanced activity to be short-lived. Here, we use a spectroscopic (BAEE) assay to quantify calcium-stabilized trypsin activity over the complete time course of a digestion. At 47 °C, the addition of calcium contributes a 25-fold enhancement in trypsin stability. Higher temperatures show a net decrease in cumulative trypsin activity. Through bottom-up MS analysis of a yeast proteome extract, we demonstrate that a 1 h digestion at 47 °C with 10 mM Ca2+ provides a 29% increase in the total number of peptide identifications. Simultaneously, the quantitative proportion of peptides with 1 or more missed cleavage sites was diminished in the 47 °C digestion, supporting enhanced digestion efficiency with the 1 h protocol. Trypsin specificity also improves, as seen by a drop in the quantitative abundance of semi-tryptic peptides. Our enhanced digestion protocol improves throughput for bottom-up sample preparation and validates the approach as a robust, low-cost alternative to maximized protein digestion efficiency. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF