BACKGROUND: Cerebral palsy (CP) is a heterogeneous group of non‐progressive disorders of posture or movement, caused by a lesion of the developing brain. Osteoporosis is common in children with cerebral palsy, particularly in children with reduced gross motor function, and leads to an increased risk of fractures. Gross motor function in children with CP can be categorised using a tool called the Gross Motor Function Classification System (GMFCS). Bisphosphonate increases bone mineral density (BMD) and reduces fracture rates. Bisphosphonate is used widely in the treatment of adult osteoporosis. However, the use of bisphosphonate in children with CP remains controversial, due to a paucity of evidence and a lack of recent trials examining the efficacy and safety of bisphosphonate use in this population. OBJECTIVES: To examine the efficacy and safety of bisphosphonate therapy in the treatment of low BMD or secondary osteoporosis (or both) in children with cerebral palsy (GMFCS Levels III to V) who are under 18 years of age. SEARCH METHODS: In September 2020, we searched CENTRAL, MEDLINE, Embase, six other databases, and two trial registers for relevant studies. We also searched the reference lists of relevant systematic reviews, trials, and case studies identified by the search, and contacted the authors of relevant studies in an attempt to identify unpublished literature. SELECTION CRITERIA: All relevant randomised controlled trials (RCTs), and quasi‐RCTs, comparing at least one bisphosphonate (given at any dose, orally or intravenously) with placebo or no drug, for the treatment of low BMD or osteoporosis in children up to 18 years old, with cerebral palsy (GMFCS Levels III to V). DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. We were unable to conduct any meta‐analyses due to insufficient data, and therefore provide a narrative assessment of the results. MAIN RESULTS: We found two relevant RCTs (34 participants). Both studies included participants with non‐ambulatory CP or CP and osteoporosis. Participants in both studies were similar in severity of CP, age distribution, and sex distribution. The two trials used different bisphosphonate medications and different intervention durations, but further comparison of the interventions was not possible due to a lack of published data from one trial. One trial received funding and support from research, academic, and hospital foundations, with pharmaceutical companies providing components of the calcium and vitamin supplement; the other trial did not report sources of funding. We judged one study at an overall high risk of bias; the other as overall unclear risk of bias. Primary outcome. Compared to placebo or no treatment, both studies provided very low certainty evidence of improved BMD at least four months post‐intervention in children treated with bisphosphonate. Only one study (12 participants) provided sufficient detail to assess a measure of the effect, and reported an improvement at six months post‐intervention in lumbar spine z‐score (mean difference (MD) 18%, 95% confidence interval (CI) 6.57 to 29.43; very low certainty evidence). Secondary outcomes. Very low certainty evidence from one study found that bisphosphonate reduced serum N‐telopeptides (NTX) more than placebo; the other study reported that both bisphosphonate plus alfacalcidol and alfacalcidol alone reduced NTX, but did not compare groups. One study reported inconclusive results between groups for serum bone‐specific alkaline phosphatase (BAP). The other study reported that both bisphosphonate plus alfacalcidol and alfacalcidol alone reduced BAP, but did not compare groups. Neither study reported data for the effect of bisphosphonate treatment on changes in volumetric BMD in the distal radius or tibia, changes in fracture frequency, bone pain, or quality of life. One study reported that two participants had febrile events noted during their first dosing schedule, but no further adverse events were reported in either relevant study. AUTHORS' CONCLUSIONS: Based on the available evidence, there is very low certainty evidence that bisphosphonate treatment may improve bone health in children with cerebral palsy. We could only include one study with 14 participants in the assessment of the effect size; therefore, the precision of the effect estimate is low. We could only evaluate one planned primary outcome, as there was insufficient detail reported in the relevant studies. Further research from RCTs on the effect and safety of bisphosphonate to improve bone health in children with cerebral palsy is required. These studies should clarify the optimal standard treatment regarding weight‐bearing exercises, vitamin D and calcium supplementation, and should include fracture frequency as a primary outcome.