1. Proposal of quantum repeater architecture based on Rydberg atom quantum processors
- Author
-
Zhang, Yan-Lei, Jie, Qing-Xuan, Li, Ming, Wu, Shu-Hao, Wang, Zhu-Bo, Zou, Xu-Bo, Zhang, Peng-Fei, Li, Gang, Zhang, Tiancai, Guo, Guang-Can, and Zou, Chang-Ling
- Subjects
Quantum Physics - Abstract
Realizing large-scale quantum networks requires the generation of high-fidelity quantum entanglement states between remote quantum nodes, a key resource for quantum communication, distributed computation and sensing applications. However, entanglement distribution between quantum network nodes is hindered by optical transmission loss and local operation errors. Here, we propose a novel quantum repeater architecture that synergistically integrates Rydberg atom quantum processors with optical cavities to overcome these challenges. Our scheme leverages cavity-mediated interactions for efficient remote entanglement generation, followed by Rydberg interaction-based entanglement purification and swapping. Numerical simulations, incorporating realistic experimental parameters, demonstrate the generation of Bell states with 99\% fidelity at rates of 1.1\,kHz between two nodes in local-area network (distance $0.1\,\mathrm{km}$), and can be extend to metropolitan-area ($25\,\mathrm{km}$) or intercity ($\mathrm{250\,\mathrm{km}}$, with the assitance of frequency converters) network with a rate of 0.1\,kHz. This scalable approach opens up near-term opportunities for exploring quantum network applications and investigating the advantages of distributed quantum information processing., Comment: 3 figures
- Published
- 2024