12 results on '"Zolotareva K"'
Search Results
2. Russian Science Foundation grant No. 20-14-00140 supported this study. The authors are thankful to the multi-access Center “Bioinformatics” for the use of computational resources as supported by Russian government project FWNR-2022-0020 and the Russian Federal Science and Technology Program for the Development of Genetic Technologies.
- Author
-
Vishnevsky, O. V., primary, Chadaeva, I. V., additional, Sharypova, E. B., additional, Khandaev, B. M., additional, Zolotareva, K. A., additional, Kazachek, A. V., additional, Ponomarenko, P. M., additional, Podkolodny, N. L., additional, Rasskazov, D. A., additional, Zemlyanskaya, E. V., additional, Bogomolov, A. G., additional, Podkolodnaya, O. A., additional, Savinkova, L. K., additional, and Ponomarenko, M. P., additional
- Published
- 2023
- Full Text
- View/download PDF
3. GlucoGenes®, a database of genes and proteins associated with glucose metabolism disorders, its description and applications in bioinformatics research.
- Author
-
Klimontov VV, Shishin KS, Ivanov RA, Ponomarenko MP, Zolotareva KA, and Lashin SA
- Abstract
Data on the genetics and molecular biology of diabetes are accumulating rapidly. This poses the challenge of creating research tools for a rapid search for, structuring and analysis of information in this field. We have developed a web resource, GlucoGenes®, which includes a database and an Internet portal of genes and proteins associated with high glucose (hyperglycemia), low glucose (hypoglycemia), and both metabolic disorders. The data were collected using text mining of the publications indexed in PubMed and PubMed Central and analysis of gene networks associated with hyperglycemia, hypoglycemia and glucose variability performed with ANDSystems, a bioinformatics tool. GlucoGenes® is freely available at: https://glucogenes.sysbio.ru/genes/main. GlucoGenes® enables users to access and download information about genes and proteins associated with the risk of hyperglycemia and hypoglycemia, molecular regulators with hyperglycemic and antihyperglycemic activity, genes up-regulated by high glucose and/or low glucose, genes down-regulated by high glucose and/or low glucose, and molecules otherwise associated with the glucose metabolism disorders. With GlucoGenes®, an evolutionary analysis of genes associated with glucose metabolism disorders was performed. The results of the analysis revealed a significant increase (up to 40 %) in the proportion of genes with phylostratigraphic age index (PAI) values corresponding to the time of origin of multicellular organisms. Analysis of sequence conservation using the divergence index (DI) showed that most of the corresponding genes are highly conserved (DI < 0.6) or conservative (DI < 1). When analyzing single nucleotide polymorphism (SNP) in the proximal regions of promoters affecting the affinity of the TATA-binding protein, 181 SNP markers were found in the GlucoGenes® database, which can reduce (45 SNP markers) or increase (136 SNP markers) the expression of 52 genes. We believe that this resource will be a useful tool for further research in the field of molecular biology of diabetes., Competing Interests: The authors declare no conflict of interest., (Copyright © AUTHORS.)
- Published
- 2024
- Full Text
- View/download PDF
4. Candidate SNP markers of changes in the expression levels of the human SCN9A gene as a hub gene for pain generation, perception, response and anesthesia.
- Author
-
Dotsenko PA, Zolotareva KA, Ivanov RA, Chadaeva IV, Podkolodnyy NL, Ivanisenko VA, Demenkov PS, Lashin SA, and Ponomarenko MP
- Abstract
In this work, we for the first time performed a comprehensive bioinformatics analysis of 568 human genes that, according to the NCBI Gene database as on September 15, 2024, were associated with pain generation, perception and anesthesia. The SCN9A gene encoding the sodium voltage-gated channel α subunit 9 and expressed in sensory neurons for transferring signals to the central nervous system about tissue damage was the only one involved in all the processes of interest at once as a hub gene. First, with our tool called OrthoWeb, we estimated the phylostratigraphic age indices (PAIs) for each of the genes, that is, identified the taxon of the most recent common ancestor of the organisms for which that gene has been sequenced. The mean PAI for all genes under study, including SCN9A as a hub gene for pain generation, perception, response and anesthesia, was '4'. On the evolutionary scale by the Kyoto Encyclopedia of Genes and Genomes (KEGG), the ancestor is the phylum Chordata, some of the most ancient of which evolved the central and the peripheral nervous system. Next, with our tool called ANDSystem, we found that phosphorylation of ion channels is a centerpiece in pain generation, perception, response and anesthesia, on which the efficiency of signal transduction from the peripheral to the central system depends. This conclusion was consistent with literature data on a key role an efficient signal transduction from the peripheral to the central system from the peripheral to the central system for adjusting the human circadian rhythm through detection of a change from the dark of night to the light of day and for identification of the direction of the source of sound by auditory brainstem nuclei, for generating the response to cold stress and for physical coordination. 21 candidate SNP marker of significant SCN9A over- and underexpression. Finally, the ratio of SCN9A upregulating to downregulating SNPs was compared to that for all known human genes estimated by the 1000 Genomes Project Consortium. It was found that SCN9A as a hub gene for pain generation, perception, pain response and anesthesia is acted on by natural selection against its downregulation, to keep the nervous system highly informed on the status of the organism and the environment., Competing Interests: The authors declare no conflict of interest., (Copyright © AUTHORS.)
- Published
- 2024
- Full Text
- View/download PDF
5. Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma.
- Author
-
Zolotareva K, Dotsenko PA, Podkolodnyy N, Ivanov R, Makarova AL, Chadaeva I, Bogomolov A, Demenkov PS, Ivanisenko V, Oshchepkov D, and Ponomarenko M
- Subjects
- Humans, Genetic Predisposition to Disease, Databases, Genetic, Glaucoma, Open-Angle genetics, Polymorphism, Single Nucleotide, Promoter Regions, Genetic, TATA-Box Binding Protein genetics, TATA-Box Binding Protein metabolism
- Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma. This condition leads to optic nerve degeneration and eventually to blindness. Tobacco smoking, alcohol consumption, fast-food diets, obesity, heavy weight lifting, high-intensity physical exercises, and many other bad habits are lifestyle-related risk factors for POAG. By contrast, moderate-intensity aerobic exercise and the Mediterranean diet can alleviate POAG. In this work, we for the first time estimated the phylostratigraphic age indices (PAIs) of all 153 POAG-related human genes in the NCBI Gene Database. This allowed us to separate them into two groups: POAG-related genes that appeared before and after the phylum Chordata, that is, ophthalmologically speaking, before and after the camera-type eye evolved. Next, in the POAG-related genes' promoters, we in silico predicted all 3835 candidate SNP markers that significantly change the TATA-binding protein (TBP) affinity for these promoters and, through this molecular mechanism, the expression levels of these genes. Finally, we verified our results against five independent web services-PANTHER, DAVID, STRING, MetaScape, and GeneMANIA-as well as the ClinVar database. It was concluded that POAG is likely to be a symptom of the human self-domestication syndrome, a downside of being civilized.
- Published
- 2024
- Full Text
- View/download PDF
6. AtSNP_TATAdb: Candidate Molecular Markers of Plant Advantages Related to Single Nucleotide Polymorphisms within Proximal Promoters of Arabidopsis thaliana L.
- Author
-
Bogomolov A, Zolotareva K, Filonov S, Chadaeva I, Rasskazov D, Sharypova E, Podkolodnyy N, Ponomarenko P, Savinkova L, Tverdokhleb N, Khandaev B, Kondratyuk E, Podkolodnaya O, Zemlyanskaya E, Kolchanov NA, and Ponomarenko M
- Subjects
- Polymorphism, Single Nucleotide, Plant Breeding, Biomarkers, Promoter Regions, Genetic, Arabidopsis genetics
- Abstract
The mainstream of the post-genome target-assisted breeding in crop plant species includes biofortification such as high-throughput phenotyping along with genome-based selection. Therefore, in this work, we used the Web-service Plant_SNP_TATA_Z-tester, which we have previously developed, to run a uniform in silico analysis of the transcriptional alterations of 54,013 protein-coding transcripts from 32,833 Arabidopsis thaliana L. genes caused by 871,707 SNPs located in the proximal promoter region. The analysis identified 54,993 SNPs as significantly decreasing or increasing gene expression through changes in TATA-binding protein affinity to the promoters. The existence of these SNPs in highly conserved proximal promoters may be explained as intraspecific diversity kept by the stabilizing natural selection. To support this, we hand-annotated papers on some of the Arabidopsis genes possessing these SNPs or on their orthologs in other plant species and demonstrated the effects of changes in these gene expressions on plant vital traits. We integrated in silico estimates of the TBP-promoter affinity in the AtSNP_TATAdb knowledge base and showed their significant correlations with independent in vivo experimental data. These correlations appeared to be robust to variations in statistical criteria, genomic environment of TATA box regions, plants species and growing conditions.
- Published
- 2024
- Full Text
- View/download PDF
7. RatDEGdb: a knowledge base of differentially expressed genes in the rat as a model object in biomedical research.
- Author
-
Chadaeva IV, Filonov SV, Zolotareva KA, Khandaev BM, Ershov NI, Podkolodnyy NL, Kozhemyakina RV, Rasskazov DA, Bogomolov AG, Kondratyuk EY, Klimova NV, Shikhevich SG, Ryazanova MA, Fedoseeva LA, Redina ОЕ, Kozhevnikova OS, Stefanova NA, Kolosova NG, Markel AL, Ponomarenko MP, and Oshchepkov DY
- Abstract
The animal models used in biomedical research cover virtually every human disease. RatDEGdb, a knowledge base of the differentially expressed genes (DEGs) of the rat as a model object in biomedical research is a collection of published data on gene expression in rat strains simulating arterial hypertension, age-related diseases, psychopathological conditions and other human afflictions. The current release contains information on 25,101 DEGs representing 14,320 unique rat genes that change transcription levels in 21 tissues of 10 genetic rat strains used as models of 11 human diseases based on 45 original scientific papers. RatDEGdb is novel in that, unlike any other biomedical database, it offers the manually curated annotations of DEGs in model rats with the use of independent clinical data on equal changes in the expression of homologous genes revealed in people with pathologies. The rat DEGs put in RatDEGdb were annotated with equal changes in the expression of their human homologs in affected people. In its current release, RatDEGdb contains 94,873 such annotations for 321 human genes in 836 diseases based on 959 original scientific papers found in the current PubMed. RatDEGdb may be interesting first of all to human geneticists, molecular biologists, clinical physicians, genetic advisors as well as experts in biopharmaceutics, bioinformatics and personalized genomics. RatDEGdb is publicly available at https://www.sysbio.ru/RatDEGdb., Competing Interests: The authors declare no conflict of interest., (Copyright © AUTHORS.)
- Published
- 2023
- Full Text
- View/download PDF
8. Candidate SNP Markers Significantly Altering the Affinity of TATA-Binding Protein for the Promoters of Human Hub Genes for Atherogenesis, Atherosclerosis and Atheroprotection.
- Author
-
Bogomolov A, Filonov S, Chadaeva I, Rasskazov D, Khandaev B, Zolotareva K, Kazachek A, Oshchepkov D, Ivanisenko VA, Demenkov P, Podkolodnyy N, Kondratyuk E, Ponomarenko P, Podkolodnaya O, Mustafin Z, Savinkova L, Kolchanov N, Tverdokhleb N, and Ponomarenko M
- Subjects
- Humans, TATA-Box Binding Protein genetics, Polymorphism, Single Nucleotide, Pandemics, TATA Box, Cardiovascular Diseases genetics, COVID-19 genetics, Atherosclerosis genetics, Atherosclerosis prevention & control
- Abstract
Atherosclerosis is a systemic disease in which focal lesions in arteries promote the build-up of lipoproteins and cholesterol they are transporting. The development of atheroma (atherogenesis) narrows blood vessels, reduces the blood supply and leads to cardiovascular diseases. According to the World Health Organization (WHO), cardiovascular diseases are the leading cause of death, which has been especially boosted since the COVID-19 pandemic. There is a variety of contributors to atherosclerosis, including lifestyle factors and genetic predisposition. Antioxidant diets and recreational exercises act as atheroprotectors and can retard atherogenesis. The search for molecular markers of atherogenesis and atheroprotection for predictive, preventive and personalized medicine appears to be the most promising direction for the study of atherosclerosis. In this work, we have analyzed 1068 human genes associated with atherogenesis, atherosclerosis and atheroprotection. The hub genes regulating these processes have been found to be the most ancient. In silico analysis of all 5112 SNPs in their promoters has revealed 330 candidate SNP markers, which statistically significantly change the affinity of the TATA-binding protein (TBP) for these promoters. These molecular markers have made us confident that natural selection acts against underexpression of the hub genes for atherogenesis, atherosclerosis and atheroprotection. At the same time, upregulation of the one for atheroprotection promotes human health.
- Published
- 2023
- Full Text
- View/download PDF
9. Differentially Expressed Genes and Molecular Susceptibility to Human Age-Related Diseases.
- Author
-
Shikhevich S, Chadaeva I, Khandaev B, Kozhemyakina R, Zolotareva K, Kazachek A, Oshchepkov D, Bogomolov A, Klimova NV, Ivanisenko VA, Demenkov P, Mustafin Z, Markel A, Savinkova L, Kolchanov NA, Kozlov V, and Ponomarenko M
- Subjects
- Animals, Humans, Rats, Gene Expression Profiling, Transcriptome, Aging genetics, Gene Expression Regulation, Disease genetics
- Abstract
Mainstream transcriptome profiling of susceptibility versus resistance to age-related diseases (ARDs) is focused on differentially expressed genes (DEGs) specific to gender, age, and pathogeneses. This approach fits in well with predictive, preventive, personalized, participatory medicine and helps understand how, why, when, and what ARDs one can develop depending on their genetic background. Within this mainstream paradigm, we wanted to find out whether the known ARD-linked DEGs available in PubMed can reveal a molecular marker that will serve the purpose in anyone's any tissue at any time. We sequenced the periaqueductal gray (PAG) transcriptome of tame versus aggressive rats, identified rat-behavior-related DEGs, and compared them with their known homologous animal ARD-linked DEGs. This analysis yielded statistically significant correlations between behavior-related and ARD-susceptibility-related fold changes (log
2 values) in the expression of these DEG homologs. We found principal components, PC1 and PC2, corresponding to the half-sum and the half-difference of these log2 values, respectively. With the DEGs linked to ARD susceptibility and ARD resistance in humans used as controls, we verified these principal components. This yielded only one statistically significant common molecular marker for ARDs: an excess of Fcγ receptor IIb suppressing immune cell hyperactivation.- Published
- 2023
- Full Text
- View/download PDF
10. Promoters of genes encoding β-amylase, albumin and globulin in food plants have weaker affinity for TATA-binding protein as compared to non-food plants: in silico analysis.
- Author
-
Vishnevsky OV, Chadaeva IV, Sharypova EB, Khandaev BM, Zolotareva KA, Kazachek AV, Ponomarenko PM, Podkolodny NL, Rasskazov DA, Bogomolov AG, Podkolodnaya OA, Savinkova LK, Zemlyanskaya EV, and Ponomarenko MP
- Abstract
It is generally accepted that during the domestication of food plants, selection was focused on their productivity, the ease of their technological processing into food, and resistance to pathogens and environmental stressors. Besides, the palatability of plant foods and their health benefits could also be subjected to selection by humans in the past. Nonetheless, it is unclear whether in antiquity, aside from positive selection for beneficial properties of plants, humans simultaneously selected against such detrimental properties as allergenicity. This topic is becoming increasingly relevant as the allergization of the population grows, being a major challenge for modern medicine. That is why intensive research by breeders is already underway for creating hypoallergenic forms of food plants. Accordingly, in this paper, albumin, globulin, and β-amylase of common wheat Triticum aestivum L. (1753) are analyzed, which have been identified earlier as targets for attacks by human class E immunoglobulins. At the genomic level, we wanted to find signs of past negative selection against the allergenicity of these three proteins (albumin, globulin, and β-amylase) during the domestication of ancestral forms of modern food plants. We focused the search on the TATA-binding protein (TBP)-binding site because it is located within a narrow region (between positions -70 and -20 relative to the corresponding transcription start sites), is the most conserved, necessary for primary transcription initiation, and is the best-studied regulatory genomic signal in eukaryotes. Our previous studies presented our publicly available Web service Plant_SNP_TATA_Z-tester, which makes it possible to estimate the equilibrium dissociation constant (KD) of TBP complexes with plant proximal promoters (as output data) using 90 bp of their DNA sequences (as input data). In this work, by means of this bioinformatics tool, 363 gene promoter DNA sequences representing 43 plant species were analyzed. It was found that compared with non-food plants, food plants are characterized by significantly weaker affinity of TBP for proximal promoters of their genes homologous to the genes of common-wheat globulin, albumin, and β-amylase (food allergens) (p < 0.01, Fisher's Z-test). This evidence suggests that in the past humans carried out selective breeding to reduce the expression of food plant genes encoding these allergenic proteins., (Copyright © AUTHORS.)
- Published
- 2022
- Full Text
- View/download PDF
11. Plant_SNP_TATA_Z-Tester: A Web Service That Unequivocally Estimates the Impact of Proximal Promoter Mutations on Plant Gene Expression.
- Author
-
Rasskazov D, Chadaeva I, Sharypova E, Zolotareva K, Khandaev B, Ponomarenko P, Podkolodnyy N, Tverdokhleb N, Vishnevsky O, Bogomolov A, Podkolodnaya O, Savinkova L, Zemlyanskaya E, Golubyatnikov V, Kolchanov N, and Ponomarenko M
- Subjects
- Gene Expression, Humans, Mutation, Promoter Regions, Genetic, TATA Box, Genes, Plant, Transcription, Genetic
- Abstract
Synthetic targeted optimization of plant promoters is becoming a part of progress in mainstream postgenomic agriculture along with hybridization of cultivated plants with wild congeners, as well as marker-assisted breeding. Therefore, here, for the first time, we compiled all the experimental data-on mutational effects in plant proximal promoters on gene expression-that we could find in PubMed. Some of these datasets cast doubt on both the existence and the uniqueness of the sought solution, which could unequivocally estimate effects of proximal promoter mutation on gene expression when plants are grown under various environmental conditions during their development. This means that the inverse problem under study is ill-posed. Furthermore, we found experimental data on in vitro interchangeability of plant and human TATA-binding proteins allowing the application of Tikhonov's regularization, making this problem well-posed. Within these frameworks, we created our Web service Plant_SNP_TATA_Z-tester and then determined the limits of its applicability using those data that cast doubt on both the existence and the uniqueness of the sought solution. We confirmed that the effects (of proximal promoter mutations on gene expression) predicted by Plant_SNP_TATA_Z-tester correlate statistically significantly with all the experimental data under study. Lastly, we exemplified an application of Plant_SNP_TATA_Z-tester to agriculturally valuable mutations in plant promoters.
- Published
- 2022
- Full Text
- View/download PDF
12. Stress Reactivity, Susceptibility to Hypertension, and Differential Expression of Genes in Hypertensive Compared to Normotensive Patients.
- Author
-
Oshchepkov D, Chadaeva I, Kozhemyakina R, Zolotareva K, Khandaev B, Sharypova E, Ponomarenko P, Bogomolov A, Klimova NV, Shikhevich S, Redina O, Kolosova NG, Nazarenko M, Kolchanov NA, Markel A, and Ponomarenko M
- Subjects
- Animals, Blood Pressure genetics, Gene Expression Profiling, Humans, Rats, Transcriptome, Hypertension metabolism
- Abstract
Although half of hypertensive patients have hypertensive parents, known hypertension-related human loci identified by genome-wide analysis explain only 3% of hypertension heredity. Therefore, mainstream transcriptome profiling of hypertensive subjects addresses differentially expressed genes (DEGs) specific to gender, age, and comorbidities in accordance with predictive preventive personalized participatory medicine treating patients according to their symptoms, individual lifestyle, and genetic background. Within this mainstream paradigm, here, we determined whether, among the known hypertension-related DEGs that we could find, there is any genome-wide hypertension theranostic molecular marker applicable to everyone, everywhere, anytime. Therefore, we sequenced the hippocampal transcriptome of tame and aggressive rats, corresponding to low and high stress reactivity, an increase of which raises hypertensive risk; we identified stress-reactivity-related rat DEGs and compared them with their known homologous hypertension-related animal DEGs. This yielded significant correlations between stress reactivity-related and hypertension-related fold changes (log2 values) of these DEG homologs. We found principal components, PC1 and PC2, corresponding to a half-difference and half-sum of these log2 values. Using the DEGs of hypertensive versus normotensive patients (as the control), we verified the correlations and principal components. This analysis highlighted downregulation of β-protocadherins and hemoglobin as whole-genome hypertension theranostic molecular markers associated with a wide vascular inner diameter and low blood viscosity, respectively.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.