1. First Proof of Principle Experiment for Muon Production with Ultrashort High Intensity Laser
- Author
-
Zhang, Feng, Deng, Li, Ge, Yanjie, Wen, Jiaxing, Cui, Bo, Feng, Ke, Wang, Hao, Wu, Chen, Pan, Ziwen, Liu, Hongjie, Deng, Zhigang, Zhang, Zongxin, Chen, Liangwen, Yan, Duo, Shan, Lianqiang, Yuan, Zongqiang, Tian, Chao, Qian, Jiayi, Zhu, Jiacheng, Xu, Yi, Yu, Yuhong, Zhang, Xueheng, Yang, Lei, Zhou, Weimin, Gu, Yuqiu, Wang, Wentao, Leng, Yuxin, Sun, Zhiyu, and Li, Ruxin
- Subjects
Physics - Accelerator Physics ,High Energy Physics - Experiment - Abstract
Muons, which play a crucial role in both fundamental and applied physics, have traditionally been generated through proton accelerators or from cosmic rays. With the advent of ultra-short high-intensity lasers capable of accelerating electrons to GeV levels, it has become possible to generate muons in laser laboratories. In this work, we show the first proof of principle experiment for novel muon production with an ultra-short, high-intensity laser device through GeV electron beam bombardment on a lead converter target. The muon physical signal is confirmed by measuring its lifetime which is the first clear demonstration of laser-produced muons. Geant4 simulations were employed to investigate the photo-production, electro-production, and Bethe-Heitler processes response for muon generation and their subsequent detection. The results show that the dominant contributions of muons are attributed to the photo-production/electro-production and a significant yield of muons up to 0.01 $\mu$/$e^-$ out of the converter target could be achieved. This laser muon source features compact, ultra-short pulse and high flux. Moreover, its implementation in a small laser laboratory is relatively straightforward, significantly reducing the barriers to entry for research in areas such as muonic X-ray elemental analysis, muon spin spectroscopy and so on.
- Published
- 2024