1. Nonequilibrium fast-lithiation of Li4Ti5O12 thin film anode for LIBs
- Author
-
Yue Chen, Shaohua Zhang, Jiefeng Ye, Xinyi Zheng, Jian-Min Zhang, Nagarathinam Mangayarkarasi, Yubiao Niu, Hongyi Lu, Guiying Zhao, Jianming Tao, Jiaxin Li, Yingbin Lin, Oleg V. Kolosov, and Zhigao Huang
- Subjects
Astrophysics ,QB460-466 ,Physics ,QC1-999 - Abstract
Abstract Li4Ti5O12 (LTO) is known for its zero-strain characteristic in electrochemical applications, making it a suitable material for fast-charging applications. Here, we systematically studied the quasi-equilibrium and non-equilibrium lithium-ion transportation kinetics in LTO thin-film electrodes, across a range of scales from the crystal lattice to the microstructured electrodes. At the crystal lattice scale, during the non-equilibrium lithiation process, lithium ions are dispersedly embedded into the 16c position, resulting in more 8a → 16c migration compared with the quasi-equilibrium lithiation, and forming numerous fast lithium diffusion channels inside the LTO lattice. At the microstructural electrode scale, optical spectrum characterizations supported the “nano-filaments” lithiation model in polycrystalline LTO thin-film electrodes during the lithiation process. Our results reveal the patterns of lithium migration and distribution within the LTO thin film electrode under the non-equilibrium and quasi-equilibrium lithiation process, offering profound insights into the potential optimization strategies for enhancing the performance of fast-charging thin film batteries.
- Published
- 2024
- Full Text
- View/download PDF