1. Polarization Substructure in the Spiral-dominated HH 111 Disk: Evidence for Grain Growth
- Author
-
Chin-Fei Lee, Zhi-Yun Li, Tao-Chung Ching, Haifeng Yang, Shih-Ping Lai, Zhe-Yu Daniel Lin, and Ying-Chi Hu
- Subjects
Star formation ,Stellar accretion disks ,Polarimetry ,Magnetic fields ,Astrophysics ,QB460-466 - Abstract
The HH 111 protostellar disk has recently been found to host a pair of spiral arms. Here we report the dust polarization results in the disk as well as the inner envelope around it, obtained with the Atacama Large Millimeter/submillimeter Array in continuum at λ ∼ 870 μ m and ∼0.″05 resolution. In the inner envelope, polarization is detected with a polarization degree of ∼6% and an orientation almost everywhere parallel to the minor axis of the disk and thus likely to be due to the dust grains magnetically aligned mainly by toroidal fields. In the disk, the polarization orientation is roughly azimuthal on the far side and becomes parallel to the minor axis on the near side, with a polarization gap in between on the far side near the central protostar. The disk polarization degree is ∼2%. The polarized intensity is higher on the near side than the far side, showing a near–far side asymmetry. More importantly, the polarized intensity and thus polarization degree are lower in the spiral arms but higher in between the arms, showing an anticorrelation of the polarized intensity with the spiral arms. Our modeling results indicate that this anticorrelation is useful for constraining the polarization mechanism and is consistent with the dust self-scattering by the grains that have grown to a size of ∼150 μ m. The interarms are sandwiched and illuminated by two brighter spiral arms and thus have higher polarized intensity. Our dust self-scattering model can also reproduce the observed polarization orientation parallel to the minor axis on the near side and the observed azimuthal polarization orientation at the two disk edges in the major axis. Further modeling work is needed to study how to reproduce the observed near–far side asymmetry in the polarized intensity and the observed azimuthal polarization orientation on the far side.
- Published
- 2024
- Full Text
- View/download PDF