Fang Jian Zhou, Bo Li, Ji Tao Wu, Shaogang Wang, Jin Huan Wei, Dan Xie, Bing Liao, Jin Zhang, Yi Hui Pan, Yun Cao, Guo-Ping Wang, Zhen Li Gao, Zhi Ling Zhang, Gui Mei Qu, Zhi Ping Liu, Yunze Xu, Wei Chen, Cong Liu, Zhen Hua Chen, Pei Xing Li, Cai Xia Li, Hui Han, Jun Lu, Qiang Liu, Lei Shi, Jun Hang Luo, Hong Wei Zhao, Wei Xue, Wen Fang Chen, Yi Ran Huang, Qing Wang, Hao Hua Yao, and Zi Hao Feng
Summary Background Identification of high-risk localised renal cell carcinoma is key for the selection of patients for adjuvant treatment who are at truly higher risk of reccurrence. We developed a classifier based on single-nucleotide polymorphisms (SNPs) to improve the predictive accuracy for renal cell carcinoma recurrence and investigated whether intratumour heterogeneity affected the precision of the classifier. Methods In this retrospective analysis and multicentre validation study, we used paraffin-embedded specimens from the training set of 227 patients from Sun Yat-sen University (Guangzhou, Guangdong, China) with localised clear cell renal cell carcinoma to examine 44 potential recurrence-associated SNPs, which were identified by exploratory bioinformatics analyses of a genome-wide association study from The Cancer Genome Atlas (TCGA) Kidney Renal Clear Cell Carcinoma (KIRC) dataset (n=114, 906 600 SNPs). We developed a six-SNP-based classifier by use of LASSO Cox regression, based on the association between SNP status and patients' recurrence-free survival. Intratumour heterogeneity was investigated from two other regions within the same tumours in the training set. The six-SNP-based classifier was validated in the internal testing set (n=226), the independent validation set (Chinese multicentre study; 428 patients treated between Jan 1, 2004 and Dec 31, 2012, at three hospitals in China), and TCGA set (441 retrospectively identified patients who underwent resection between 1998 and 2010 for localised clear cell renal cell carcinoma in the USA). The main outcome was recurrence-free survival; the secondary outcome was overall survival. Findings Although intratumour heterogeneity was found in 48 (23%) of 206 cases in the internal testing set with complete SNP information, the predictive accuracy of the six-SNP-based classifier was similar in the three different regions of the training set (areas under the curve [AUC] at 5 years: 0·749 [95% CI 0·660–0·826] in region 1, 0·734 [0·651–0·814] in region 2, and 0·736 [0·649–0·824] in region 3). The six-SNP-based classifier precisely predicted recurrence-free survival of patients in three validation sets (hazard ratio [HR] 5·32 [95% CI 2·81–10·07] in the internal testing set, 5·39 [3·38–8·59] in the independent validation set, and 4·62 [2·48–8·61] in the TCGA set; all p Interpretation Our six-SNP-based classifier could be a practical and reliable predictor that can complement the existing staging system for prediction of localised renal cell carcinoma recurrence after surgery, which might enable physicians to make more informed treatment decisions about adjuvant therapy. Intratumour heterogeneity does not seem to hamper the accuracy of the six-SNP-based classifier as a reliable predictor of recurrence. The classifier has the potential to guide treatment decisions for patients at differing risks of recurrence. Funding National Key Research and Development Program of China, National Natural Science Foundation of China, Guangdong Provincial Science and Technology Foundation of China, and Guangzhou Science and Technology Foundation of China.