1. Evaluation on the Potential for Hepatotoxic Components from Herba Epimedii to Induce Apoptosis in HepG2 Cells and the Analysis of the Influence of Metabolism in Liver Microsomes
- Author
-
Lin Zhang, Cai Zhang, Xiyi Peng, Zhaojuan Guo, Song Yang, and Dongjun Fu
- Subjects
Herba Epimedii ,hepatotoxicity ,apoptosis ,metabolism ,liver microsomes ,Organic chemistry ,QD241-441 - Abstract
The potential hepatotoxicity of Herba Epimedii is a focal point in traditional Chinese medicine security applications. As determined in our previous study, the flavonoid constituents of Herba Epimedii, sagittatoside A, icariside I, baohuoside I and icaritin, are related to the hepatotoxicity of this herb. However, the hepatotoxic mechanism of these components needs to be clarified further, and whether these components can maintain their injury action following liver metabolism needs to be confirmed. Herein, the effects of sagittatoside A, icariside I, baohuoside I and icaritin on the apoptosis of HepG2 cells and the expression of key proteins, including Bax, Bcl-2, Caspase-3 and Caspase-9, were evaluated. Moreover, with liver microsome incubation, the influences of metabolism on the apoptotic activities of these components were investigated. Then, by HPLC–MS/MS analyses, the in vitro metabolic stability of these components was determined after incubation with different kinds of liver microsomes to explain the reason for the influence. The results suggested that sagittatoside A, baohuoside I and icaritin could induce apoptosis, which is likely to be closely related to the induction of the intrinsic apoptosis pathway. After metabolic incubation, the sagittatoside A and icaritin metabolism mixture could still induce apoptosis due to less metabolic elimination, while the icariside I and baohuoside I metabolism mixtures respectively got and lost the ability to induce apoptosis, probably due to quick metabolism and metabolic transformation. The findings of this study may provide important references to explore the material basis and mechanism of the hepatotoxicity of Herba Epimedii.
- Published
- 2024
- Full Text
- View/download PDF