1. Stator ITSC Fault Diagnosis for EMU Induction Traction Motor Based on Goertzel Algorithm and Random Forest
- Author
-
Zhao, Jie Ma, Yingxue Li, Liying Wang, Jisheng Hu, Hua Li, Jiyou Fei, Lin Li, and Geng
- Subjects
Goertzel algorithm ,ITSC fault ,traction motor ,random forest ,fault diagnosis - Abstract
The stator winding insulation system is the most critical and weakest part of the EMU’s (electric multiple unit’s) traction motor. The effective diagnosis for stator ITSC (inter-turn short-circuit) faults can prevent a fault from expanding into phase-to-phase or ground short-circuits. The TCU (traction control unit) controls the traction inverter to output SPWM (sine pulse width modulation) excitation voltage when the traction motor is at a standstill. Three ITSC fault diagnostic conditions are based on different IGBTs’ control logics. The Goertzel algorithm is used to calculate the fundamental current amplitude difference Δi and phase angle difference Δθ of equivalent parallel windings under the three diagnostic conditions. The six parameters under the three diagnostic conditions are used as features to establish an ITSC fault diagnostic model based on the random forest. The proposed method was validated using a simulation experimental platform for the ITSC fault diagnosis of EMU traction motors. The experimental results indicate that the current amplitude features Δi and phase angle features Δθ change obviously with an increase in the ITSC fault extent if the ITSC fault occurs at the equivalent parallel windings. The accuracy of the ITSC fault diagnosis model based on the random forest for ITSC fault detection and location, both in train and test samples, is 100%.
- Published
- 2023
- Full Text
- View/download PDF