1. Phase coding semi-quantum key distribution system based on the Single-state protocol
- Author
-
Hou, Qincheng, Huang, Siying, Mo, Naida, Wang, Jindong, Wei, Zhengjun, Yu, Yafei, Zhao, Tianming, and Zhang, Zhiming
- Subjects
Quantum Physics ,Physics - Optics - Abstract
Semi-quantum key distribution (SQKD) allows sharing random keys between a quantum user and a classical user. However, implementing classical user operations is challenging, posing a hurdle to achieving the Single-state protocol. By using the "selective modulation" method, the feasibility of SQKD is verified in principle. The proposal of the selective modulation method enables the realization of other protocols for SQKD. To advance experimental progress in SQKD, we propose and implement a phase-encoded semi-quantum key distribution system based on the Single-state protocol and the "selective modulation" method. The system operates at a frequency of 100MHz and an average photon number of 0.1. The interference contrast achieved 96.52%, the average quantum bit error rate was 1.19%, and the raw key rate reached 88Kbps. Our experimental results demonstrate the feasibility and stability of the proposed phase-encoded semi-quantum key distribution system. Furthermore, by leveraging the "selective modulation" scheme proposed in this paper, we develop a comprehensive theoretical description of selective modulation. Through an analysis of quantum state evolution, we assess the security of our system, ultimately demonstrating its resilience against attacks targeting quantum states. The classical user of our system requires only two optical devices, significantly reducing the equipment requirements and enhancing its application potential. This work validates the feasibility of semi-quantum key distribution experiments and provides ideas for future research on semi-quantum key distribution experiments and security studies.
- Published
- 2024