1. LumosCore: Highly Scalable LLM Clusters with Optical Interconnect
- Author
-
Han, Xinchi, Zhao, Shizhen, Lv, Yongxi, Cao, Peirui, Jiang, Weihao, Lin, Shengkai, and Wang, Xinbing
- Subjects
Computer Science - Networking and Internet Architecture - Abstract
The emergence of Large Language Model(LLM) technologies has led to a rapidly growing demand for compute resources in models. In response, the enterprises are building large-scale multi-tenant GPU clusters with 10k or even ore GPUs. In contrast to the rapidly growing cluster size, the bandwidth of clusters has also been increasing to meet communication demands, with 800 Gbps optical modules already in practical use and 1.6 Tbps modules on the horizon. However, designing clusters that simultaneously meet the requirements of large scale and high bandwidth is challenging due to the limited capacity of electrical switch chips. Unlike electrical switch chips, the single-port bandwidth of MEMS-OCS is solely determined by the optical module, making it straightforward to achieve both bandwidth and scability requirement. In this paper, we propose an opto-electronic hybrid architecture called \textbf{LumosCore}. We address the issues of L2 protocols incompatibility potential network contention and algorithm time complexity through physical topology and logical topology design. Additionally, we design a polynomial-time complexity link reconfiguration algorithm to reconfigure MEMS-OCS with minimal time overhead. We validate the feasibility of the proposed scheme in a cluster consisting of 128 NPUs, and through simulation based on real traces, we demonstrate the superiority of \textbf{LumosCore} over traditional architectures.
- Published
- 2024