1. Document Parsing Unveiled: Techniques, Challenges, and Prospects for Structured Information Extraction
- Author
-
Zhang, Qintong, Huang, Victor Shea-Jay, Wang, Bin, Zhang, Junyuan, Wang, Zhengren, Liang, Hao, Wang, Shawn, Lin, Matthieu, He, Conghui, and Zhang, Wentao
- Subjects
Computer Science - Multimedia ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Document parsing is essential for converting unstructured and semi-structured documents-such as contracts, academic papers, and invoices-into structured, machine-readable data. Document parsing extract reliable structured data from unstructured inputs, providing huge convenience for numerous applications. Especially with recent achievements in Large Language Models, document parsing plays an indispensable role in both knowledge base construction and training data generation. This survey presents a comprehensive review of the current state of document parsing, covering key methodologies, from modular pipeline systems to end-to-end models driven by large vision-language models. Core components such as layout detection, content extraction (including text, tables, and mathematical expressions), and multi-modal data integration are examined in detail. Additionally, this paper discusses the challenges faced by modular document parsing systems and vision-language models in handling complex layouts, integrating multiple modules, and recognizing high-density text. It emphasizes the importance of developing larger and more diverse datasets and outlines future research directions.
- Published
- 2024