1. Advanced Object Detection and Pose Estimation with Hybrid Task Cascade and High-Resolution Networks
- Author
-
Jin, Yuhui, Zhang, Yaqiong, Xu, Zheyuan, Zhang, Wenqing, and Xu, Jingyu
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
In the field of computer vision, 6D object detection and pose estimation are critical for applications such as robotics, augmented reality, and autonomous driving. Traditional methods often struggle with achieving high accuracy in both object detection and precise pose estimation simultaneously. This study proposes an improved 6D object detection and pose estimation pipeline based on the existing 6D-VNet framework, enhanced by integrating a Hybrid Task Cascade (HTC) and a High-Resolution Network (HRNet) backbone. By leveraging the strengths of HTC's multi-stage refinement process and HRNet's ability to maintain high-resolution representations, our approach significantly improves detection accuracy and pose estimation precision. Furthermore, we introduce advanced post-processing techniques and a novel model integration strategy that collectively contribute to superior performance on public and private benchmarks. Our method demonstrates substantial improvements over state-of-the-art models, making it a valuable contribution to the domain of 6D object detection and pose estimation.
- Published
- 2025