1. Implications of Higgs mass for hidden sector SUSY breaking
- Author
-
Baer, Howard, Barger, Vernon, Bolich, Jessica, and Zhang, Kairui
- Subjects
High Energy Physics - Phenomenology - Abstract
Hidden sector SUSY breaking where charged hidden sector fields obtain SUSY breaking vevs once seemed common in dynamical SUSY breaking (DSB). In such a case, scalars can obtain large masses but gauginos and A-terms gain loop-suppressed anomaly-mediated contributions which may be smaller by factors of 1/16\pi^2 ~1/160. This situation leads to models such as PeV or mini-split supersymmetry with m(scalars)~ 160 m(gauginos). In order to generate a light Higgs mass m_h~ 125 GeV, the scalar mass terms are required in the 10-100 TeV range, leading to large, unnatural contributions to the weak scale. Alternatively, in gravity mediation with singlet hidden sector fields, then m(scalars)~ m(gauginos)~ A-terms and the large A-terms lift m_h ->125 GeV even for natural values of m(stop1)~ 1-3 TeV. Requiring naturalness, which is probabilistically preferred by the string landscape, then the measured Higgs mass seems to favor singlets in the hidden sector, which can be common in metastable and retrofitted DSB models., Comment: 18 pages with 8 .png figures
- Published
- 2024