1. Bulk-spatiotemporal vortex correspondence in gyromagnetic double-zero-index media
- Author
-
Zhang, Ruo-Yang, Cui, Xiaohan, Zeng, Yuan-Song, Chen, Jin, Liu, Wenzhe, Wang, Mudi, Wang, Dongyang, Zhang, Zhao-Qing, Wang, Neng, Wu, Geng-Bo, and Chan, C. T.
- Subjects
Physics - Optics - Abstract
Photonic double-zero-index media, distinguished by concurrently zero-valued permittivity and permeability, exhibit extraordinary properties not found in nature. Remarkably, the notion of zero-index can be substantially expanded by generalizing the constitutive parameters from null scalars to nonreciprocal tensors with nonzero matrix elements but zero determinants. Here, we experimentally realize such a new class of gyromagnetic double-zero-index metamaterials possessing both double-zero-index features and nonreciprocal hallmarks. As an intrinsic property, this metamaterial always emerges at a spin-1/2 Dirac point of a topological phase transition. We discover and rigorously prove that a spatiotemporal reflection vortex singularity is always anchored to the metamaterial's Dirac point, with the vortex charge being determined by the topological invariant leap across the phase transition. This establishes a unique bulk-spatiotemporal vortex correspondence that extends the protected boundary effects into the time domain and exclusively characterizes topological phase transition points, setting it apart from any pre-existing bulk-boundary correspondence. Based on this correspondence, we propose and experimentally demonstrate a mechanism to deterministically generate optical spatiotemporal vortex pulses with firmly fixed central frequency and momentum, hence showing unparalleled robustness. Our findings uncover deep connections between zero-refractive-index photonics, topological photonics, and singular optics, opening the avenue for the manipulation of space-time topological light fields via the inherent topology of extreme-parameter metamaterials., Comment: 9 pages, 5 figures
- Published
- 2024