1. A Comprehensive Survey on Machine Learning Driven Material Defect Detection: Challenges, Solutions, and Future Prospects
- Author
-
Bai, Jun, Wu, Di, Shelley, Tristan, Schubel, Peter, Twine, David, Russell, John, Zeng, Xuesen, and Zhang, Ji
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Electrical Engineering and Systems Science - Image and Video Processing - Abstract
Material defects (MD) represent a primary challenge affecting product performance and giving rise to safety issues in related products. The rapid and accurate identification and localization of MD constitute crucial research endeavours in addressing contemporary challenges associated with MD. Although conventional non-destructive testing methods such as ultrasonic and X-ray approaches have mitigated issues related to low efficiency in manual inspections, they struggle to meet the diverse requirements of high precision, real-time speed, automation, and intelligence. In recent years, propelled by the swift advancement of machine learning (ML) technologies, particularly exemplified by deep learning, ML has swiftly emerged as the core technology and a prominent research direction for material defect detection (MDD). Through a comprehensive review of the latest literature, we systematically survey the ML techniques applied in MDD into five categories: unsupervised learning, supervised learning, semi-supervised learning, reinforcement learning, and generative learning. We provide a detailed analysis of the main principles and techniques used, together with the advantages and potential challenges associated with these techniques. Furthermore, the survey focuses on the techniques for defect detection in composite materials, which are important types of materials enjoying increasingly wide application in various industries such as aerospace, automotive, construction, and renewable energy. Finally, the survey explores potential future directions in MDD utilizing ML technologies. This comprehensive survey not only consolidates existing literature on ML-based MDD technologies but also serves as a foundational reference for future researchers and industrial practitioners, providing valuable insights and guidance in developing advanced and efficient MDD systems.
- Published
- 2024