1. Recruitment of CTCF to the SIRT1 promoter after Oxidative Stress mediates Cardioprotective Transcription.
- Author
-
Wagner T, Priyanka P, Micheletti R, Friedman MJ, Nair SJ, Gamliel A, Taylor H, Song X, Cho M, Oh S, Li W, Han J, Ohgi KA, Abrass M, D'Antonio-Chronowska A, D'Antonio M, Hazuda H, Duggirala R, Blangero J, Ding S, Guzmann C, Frazer KA, Aggarwal AK, Zemljic-Harpf AE, Rosenfeld MG, and Suh Y
- Abstract
Because most DNA-binding transcription factors (dbTFs), including the architectural regulator CTCF, bind RNA and exhibit di-/multimerization, a central conundrum is whether these distinct properties are regulated post-transcriptionally to modulate transcriptional programs. Here, investigating stress-dependent activation of SIRT1, encoding an evolutionarily-conserved protein deacetylase, we show that induced phosphorylation of CTCF acts as a rheostat to permit CTCF occupancy of low-affinity promoter DNA sites to precisely the levels necessary. This CTCF recruitment to the SIRT1 promoter is eliciting a cardioprotective cardiomyocyte transcriptional activation program and provides resilience against the stress of the beating heart in vivo . Mice harboring a mutation in the conserved low-affinity CTCF promoter binding site exhibit an altered, cardiomyocyte-specific transcriptional program and a systolic heart failure phenotype. This transcriptional role for CTCF reveals that a covalent dbTF modification regulating signal-dependent transcription serves as a previously unsuspected component of the oxidative stress response.
- Published
- 2024
- Full Text
- View/download PDF